
DAHLIA 2.0: A Visual Analyzer of Database
Usage in Dynamic and Heterogeneous Systems

Loup Meurice and Anthony Cleve
PReCISE Research Center, University of Namur, Belgium

{loup.meurice,anthony.cleve}@unamur.be

Abstract—Understanding the links between application pro-
grams and their database is useful in various contexts such as
migrating information systems towards a new database platform,
evolving the database schema, or assessing the overall system
quality. However, data-intensive applications nowadays tend to
access their underlying database in an increasingly dynamic way.
The queries that they send to the database server are usually built
at runtime, through String concatenation, or Object-Relational-
Mapping (ORM) frameworks. This level of dynamicity signifi-
cantly complicates the task of adapting programs to an evolving
database schema. In this paper, we present DAHLIA 2.0, an
interactive visualization tool that allows developers to analyze
the database usage in order to support data-intensive software
evolution and more precisely, program-database co-evolution.

I. INTRODUCTION

Maintaining and evolving large software systems is becom-
ing increasingly complex in the case of data-intensive software
systems (DISS). These systems manipulate a huge amount
of data usually stored in a relational database, by means of
possibly complex and dynamic interactions between the appli-
cation programs and the database. When the database schema
evolves, developers often need to adapt the source code of
the applications that accesses the changed schema elements.
This adaptation process is usually achieved manually. Further-
more, nowadays, a large variety of frameworks and libraries
can be used to access the database. In particular, Object-
relational mapping (ORM) technologies provide a high level
of abstraction upon a relational database that allows developers
to use the programming language they are comfortable with
instead of using SQL statements and stored procedures. As
a consequence, the interactions between the program source
code and the database may become more dynamic, and thus
more complex to understand.

For instance, Hibernate and JPA (Java Persistence API) offer
to Java developers a way for mapping an object-oriented do-
main model to a traditional relational database. Their primary
feature is to map Java classes to database tables (and Java
data types to SQL data types). Hibernate and JPA provide
both an SQL inspired language called, respectively, Hibernate
Query Language (HQL) and Java Persistence Query Language
(JPQL) which allows to write SQL like queries using the
mappings defined before. In addition, both also provide a
way to perform CRUD operations (Create, Read, Update, and
Delete) on the instances of the mapped entity classes. Figure 1

0The first author is supported by the F.R.S.-FNRS via the DISSE project.

shows an example of JPA code accessing a database. Those
mechanisms partially/fully hide the actual executed SQL query
by making the access more abstract.

1 E nt i t yM anagerF actory emf = . . . ;
2 E nt i t yM anager em = emf . creat eE nt i t yM anager () ;
3 O rder order = . . . ;
4 In t eger cu st i d = order . getC ustomerId () ;
5 C ustomer cust = (C ustomer)em. creat eQ uery (”SELECT c FROM Customer c

WHERE c . cu st i d =:cu st i d ”)
6 . set P aramet er (” cu st i d ” , cu st i d) . get Si ngl eR esu l t () ;

1 E nt i t yM anager ent i t yM anager = ent i t yM anagerF act ory . creat eE nt i t yM anager
() ;

2 ent i t yM anager . get T ransact i on () . begi n () ;
3 O rder order= createN ewO rder () ;
4 ent i t yM anager . p er s i st (order) ;
5 ent i t yM anager . get T ransact i on () . commit () ;
6 ent i t yM anager . c l ose () ;

(1) Sample JPQL query. Customer selection according to a given id

(2) JPA operation on a mapped entity class instance. Creation and insertion of a new order

Fig. 1. Samples of JPA accesses.

In this context, manually recovering the links between the
source code and the database schema and understanding it
may prove complicated due to higher levels of abstraction and
dynamicity. This paper addresses this particular problem. It
presents DAHLIA 2.0, a visualization tool allowing devel-
opers to analyze the database usage in highly dynamic and
heterogeneous systems. Our tool extracts and visualizes the
database accesses executed in the source code in order to
derive useful information about the database usage. DAHLIA
2.0 is a support to software comprehension and to database-
program co-evolution.

The remainder of this paper is structured as follows.
Section II discusses the related work. Section III presents
DAHLIA 2.0 and its main features. In Section IV, we conclude
the paper and anticipate future directions.

II. RELATED WORK

While the database schema evolution literature is very
large [15], researchers have only recently started to pay more
attention to the analysis of of database schema and application
code co-evolution. Qiu et al. [14] empirically analyzed the
co-evolution of relational database schemas and code in ten
open-source database applications from various domains. They
studied specific change types inside the database schema
and estimated the impact of such changes on PHP code.
Karahasanoić [5] studied how the maintenance of application
consistency can be supported by identifying and visualizing
the impact of changes in evolving object-oriented systems, in-
cluding changes originating from a database schema. However,

he focused on object-oriented databases rather than relational
databases.

Using what-if analysis [2] for changes that occur in the
schema/structure of the database was proposed by Papaste-
fanatos et al. [11]–[13]. They presented Hecataeus, a frame-
work that allows the user to anticipate hypothetical database
schema evolution events and to examine their impact over a
set of queries and views provided as input by the user. Unlike
our tool, Hecataeus does not work at the source code level
and does not consider the presence of different database access
technologies.

Maule et al. [7] proposed an impact analysis approach for
schema changes. They studied a commercial object-oriented
content management system and statically analyzed the impact
set of relational database schema changes on the source code.
They implemented their approach for the ADO.NET (C#)
technology. Liu et al. [6] proposed an approach to extract the
attribute dependency graph out of a database application from
its source code by using static analysis. Their purpose was to
aid maintenance processes, particularly impact analysis. They
implemented their approach for PHP-based applications.

Finally, several previous papers identify, extract and analyze
database usage in application programs. The purpose of these
approaches ranges from error checking [3], [16], SQL fault
localization [1], to fault diagnosis [4].

In [8], we presented DAHLIA 1.0, a visualization tool that
allows us to analyze the evolution history of a database over its
lifetime. That tool makes use of the well-known city metaphor
of CodeCity [17]; a city building represents a database table
and its height, width and color are computed from its historical
information. DAHLIA 1.0 allows developers to answer some
questions related to database schema evolution like how the
database schema evolves over time and which developer is the
specialist of a given database schema part. While DAHLIA 1.0
only focuses on the database schema and its history, DAHLIA
2.0 now considers the database usage and the dependencies
between the application source code and the database schema.

III. DAHLIA 2.0

Meurice et al. (QRS 2016)

Data
model

DAHLIA
Database

Meurice et al. (CAISE 2016)

Database
Accesses

Database
Accesses

Database
Accesses

Database
Accesses

version1

version2

versionn-1

versionn

Versioning
System

Fig. 2. Overview of our tool-supported approach.

Figure 2 depicts the overview of our tool-supported ap-
proach. That latter consists of two steps: (1) we extract

relevant data related to the database usage of the given DISS
and (2) we visualize that database usage. One strength of
DAHLIA 2.0 is that it is not only restricted to the analysis
of on unique system version; contrariwise, our approach can
consider several versions of a DISS at the same time.

A. Data Extraction

Let us define V = {v0, ..., vn}, the set of system versions
(available from the versioning repository) on which the de-
veloper wishes to focus (n ≥ 0). For each successive version
(and its corresponding source code version), we use the tool
support we developed in another previous work dedicated to
database access recovery in Java source code [10]. We use this
static analysis approach, especially designed for Java systems,
to automatically locate and extract all the database accesses
that use JDBC (industry standard for database-independent
connectivity between the Java programming language and
relational databases), Hibernate and JPA. For each detected
database access (and for each version), we extract the exact
code locations where the access is executed as well as the
database tables/columns manipulated by the access. Moreover,
we also detect and extract all the ORM mappings defined
between a class (resp. attribute) and a table (resp. column). For
each version, we determine where and how each table/column
is mapped to the Java code elements.

At this point, we obtain for each version, a set of the
database accesses detected by our static analysis as well as
the code location of each access and the database tables and
columns involved in it. The code location of a given access is
expressed by the minimal program path necessary for creating
and executing the database access. The below example shows
sample information gathered for a database access where a
SQL query is executed at line 124 in DatabaseUtil.java. The
current method in which the query execution occurs is called
by OrderChecker.java at line 56. The database objects involved
in this query are the drug order table and units, one of its
columns.

JDBC access: ’SELECT DISTINCT units FROM drug_order WHERE
units is NOT NULL’
Program path: [OrderChecker.java, line=56] → [DatabaseUtil.java, line=124]
Database schema objects:

↪→ Database Tables: [drug order]
↪→ Database Columns: [drug order.units]

We use a second tool support we implemented and detailed
in [9] allowing us to organize the collected data of each version
according to a particular data model. The central element of
that model is the version. That model is composed of 4 main
different parts:

a) The source code history: this part represents the
history of the source code objects. A Java file may contain
several classes, methods and attributes. Each code object may
exist in several versions and, for each version, the object has
a particular position in the code expressed as a couple of
coordinates: a begin line and column, and an end line and
column.

b) The database schema history: the database schema
evolves over time and may have a different set of schema

objects. Only table and column objects are considered in the
model. The database tables and columns may be present in
several versions. Depending on the version, a column may
have a different type.

c) The ORM mapping history: by means of an ORM
(e.g., Hibernate/JPA), developers can define a mapping be-
tween an entity class and a table or between an attribute and
a column. An ORM mapping may exist in several versions.

d) The database access history: this part represents the
history of the database accesses, i.e., of the source code loca-
tions that provide an access to the database. Those database
accesses use a particular technology (e.g., JDBC, Hibernate
or JPA) to query the database and are located at a particular
position in the source code (i.e., in a particular file, method and
line). For each database access, the set of accessed database
objects is recorded. A database access may, in turn, exist in
several versions.

More details about the data model and the process organiz-
ing the collected data according to that data model are given
in [9]. From that process, we obtain a relational database which
stores the collected data according to the data model. This
database can be thus queried.

B. Data Visualization

The database obtained by the previous data extraction phase
is the only input required by DAHLIA 2.0. The visualization
tool queries that database in order to compute and visualize
information related to the database usage of a given DISS.

As previously explained, we extended our visualization tool
DAHLIA 1.0 to allow developers to analyze the database usage
of a system. In [8], DAHLIA 1.0 only considered the database
schema history. The novelty in that extension is that DAHLIA
2.0 is now able to analyze the database usage by exploiting
the links between the program source code and the database.
The main role of DAHLIA 2.0 is to provide developers with a
visual support to database-program co-evolution by analyzing
the dependencies between the code and the database; it will
thus allow assessing the costs of a future system change (e.g.,
what if I modify that database table?). We list below some of
the novel features implemented in DAHLIA 2.012.

Visualizing the Database City: this features reuses the 3D
city-metaphor that facilitates the visualization of very large
database schemas. A database table is represented as a 3D
building. We use the building height, width and color for
representing database usage metrics. The user may select the
metrics to affect to each dimension and may thus customize the
city according to his/her needs. An example of metrics for the
building height/width may be the number of files accessing
the given table, the number of code locations accessing the
given table, etc. Metrics for the building color may be the
database access technology distribution (e.g., a particular color
for all the database tables accessed by a given technology), the

1Each of those features can be applied to any considered system versions;
the latest version as well as any older one.

2All the features of DAHLIA 1.0 are included in DAHLIA 2.0. We only
present in that paper the new features. The former ones are detailed in [8].

ORM mapping distribution (e.g., a particular color for all the
database tables that are mapped to the code via an ORM), etc.
That kind of metrics permits developers to instinctively detect
the ”sensitive” database parts hardly linked (accessed) to the
code.

Figure 3 depicts an example of 3D database city that one
can visualize within DAHLIA 2.0. Each building (table) has a
height denoting the number of columns, a width representing
the number of accessing queries sent from the source code,
and a color representing the database access technology. As
illustrated, the user can visualize the 2D corresponding table
form.

Fig. 3. A 3D database city as visualized within DAHLIA 2.0.
The right panel shows the 2D form of a selected table.

Visualizing the Code City: that feature proposes a vi-
sualization of the program source code similar to [17] by
representing a file as a 3D building. The novelty we propose
is also into the metrics affected to the building height, width
and color. For instance, the user may affect some metrics to
the building height/width like the number of accessed tables
by the given file, the number of locations in the given file
accessing the database, the number of (SQL) queries detected
in the given file, etc. Concerning the building color, the user
may use metrics like the access technology distribution (e.g.,
a particular color for the files using a given database access
technology), the ORM mapping distribution (e.g., a particular
color for the files defining some ORM mappings), etc. Here
again, that kind of metrics will allow the immediate detection
of ”sensitive” code parts.

Figure 4 shows an example of 3D code city as visualized
within DAHLIA 2.0. Each building - a Java file in that case
- has a height, i.e., the number of locations accessing the
database), a width, i.e., the number of methods in the file,
and a color for the database access technology(ies) used in
the file (black = none, green = Hibernate, blue = JDBC, mix
= JDBC & Hibernate).

Visualizing the links between the Database and Code city:
that feature proposes a dual visualization; the database and
code cities are side-by-side according to the metrics chosen
by the user. It enables the user to assess the costs of a future
database schema change or a code refactoring step. The user
can click on a particular database table and visualize which

Fig. 4. A 3D code city as visualized within DAHLIA 2.0. The right panel
shows information about a selected file, i.e., the access locations, the accessed
tables and the ORM mappings.

part of the program source code accesses it. The results of a
click on a table will be (1) the highlighting of all the files
accessing it and (2) the accurate detection of all the code
locations accessing it. Figure 5 depicts the database and code
cities as visualized within DAHLIA 2.0. The database (left)
and code (right) cities are side-by-side. The green tables are
tables with Hibernate mapping, black tables are tables without
any ORM mappings. The table height represents the number
of columns while the table width is the number of SQL queries
accessing it. The green files are files using Hibernate, blue files
are files using JDBC and black files do not access the database.
The file height represents the number of accessed tables while
the width represents the number of locations accessing the
database. Figure 5 illustrates the following scenario: the user
plans to refactor the Java file HibernateConceptDAO.java and
wishes to assess the costs of that evolution phase with help of
DAHLIA 2.0. The user clicks on the HibernateConceptDAO
class (highlighted building in the right city depicted in cyan).
DAHLIA automatically and instantly highlights (cyan color)
all the database tables (left city) accessed by that class. By this
way, the user can directly have an estimation of the required
effort to perform that evolution phase.

Fig. 5. Database (left) and Code (right) cities side-by-side as visualized within
DAHLIA 2.0. The right panel shows information about a selected file.

Jumping into the code: in addition to the 3D support, the
tool can list, on its right panel, a large set of information. For

(a) Dependencies between files and
tables

(b) Dependencies between tables

Fig. 6. Circular views as visualized within DAHLIA 2.0. Red bullets represent
files, while green ones depict tables. Darker the color stronger the dependency.

instance, the user can decide to list (1) all the tables accessed
by a given file, (2) all the precise code locations (precision in
term of line of code) in a given file which allows accessing the
database, (3) all the (SQL) queries accessing a given table (as
well as their actual value, the accessed database objects and
their execution location in the code), etc. Nevertheless, thanks
to that information panel, the user has an accurate report on the
database usage. Moreover, that panel allows the user to directly
jump into the precise code locations which will require some
modifications/adaptations in case of code/database change.

Visualizing the database-program dependencies within
a circular view: that feature uses a circular visualization.
Unlike the 3D visualization, this mode allows to directly
visualize the dependencies between the program source code
and the database in terms of intensity. Precisely determining
the dependencies between a table and a file or between a table
and another table can considerably help the user to assess
the future impact of any change on the system. Figure 6
depicts two examples of circular visualization aiming to detect
the dependencies (a) between the source code files and the
database tables in term of access locations and (b) between
the tables themselves in term of closeness - namely, two
tables are close when they appear together in a same SQL
query. Moreover, the user can decide to only select a particular
table/file and display its dependencies with the other objects.

C. DAHLIA 2.0 Applied to Real-Life Systems

We selected 3 popular open-source data-intensive systems
and we visualized their database usage within DAHLIA 2.0.

1) OSCAR (www.oscar-emr.com): OSCAR is an open-
source ERM information system widely used in the health-
care industry in Canada. Its primary purpose is to maintain
electronic patient records and interfaces of a variety of other
information systems used in the healthcare industry. OSCAR
has been developed since 2002. OSCAR combines different
ways to access the database like JDBC, Hibernate and JPA.

2) Broadleaf Commerce (www.broadleafcommerce.org):
Broadleaf is an open-source, e-commerce framework writ-
ten in Java on top of the Spring framework. It facilitates
the development of enterprise-class, commerce-driven sites

www.oscar-emr.com
www.broadleafcommerce.org

by providing a robust data model, services, and specialized
tooling that take care of most of the ’heavy lifting’ work.
Broadleaf has been developed since 2008. It uses a relational
database accessed via JPA.

3) OpenMRS (www.openmrs.org): OpenMRS is a collab-
orative open-source project to develop software to support
the delivery of healthcare in developing countries (mainly in
Africa). It was conceived as a general-purpose EMR system
that could support the full range of medical treatments. It
has been developed since 2006. OpenMRS uses a MySQL
database accessed via Hibernate and dynamic SQL (JDBC).

We selected those three systems because they have all a
significant history and code size, and use different database
access technologies. The use of several technologies together
within the same system and the abstraction brought by ORM
technologies may make comprehension and evolution difficult.
Table I gives some characteristics of OSCAR, Broadleaf and
OpenMRS. We respectively focused on 242, 118 and 164
versions of OSCAR, Broadleaf and OpenMRS in our data
extraction process. The database schema size and the number
of code lines of the latest considered version are included
in Table I. Table II presents, for each system and technology
supported, the total number of locations accessing the database
in the latest considered system version.

TABLE I
SIZE METRICS OF THE SYSTEMS - CREATION DATE, NUMBER OF VERSIONS

CONSIDERED IN THE VERSIONING REPOSITORY, NUMBER OF CODE LINES AND

DATABASE SCHEMA SIZE.

System Start Date Versions kLOC Tables Columns

OSCAR 11/2002 242 > 2000 512 15680
Broadleaf 12/2008 118 > 250 179 965
OpenMRS 05/2006 164 > 300 88 951

TABLE II
NUMBER OF DATABASE ACCESS LOCATIONS PER TECHNOLOGY

System Database Accesses
JDBC Hib JPA

OSCAR 123 661 727 31 729
OpenMRS 77 687 0
Broadleaf 0 0 930

For each of those systems, we firstly computed the database,
structured according to our data model (see Section III-A),
containing all the required database usage information. The
data extraction process for each system is further described
in [9]. For each considered version, we can visualize the sys-
tem database usage within DAHLIA 2.0. Figures 3, 4, 5 and 6
are visualizations of a recent version of OpenMRS. A large
collection of pictures showing the use of DAHLIA 2.0 on each
system is provided at www.info.fundp.ac.be/∼lme/DAHLIA/
as well as an online video presenting DAHLIA 2.0 and its
features.

IV. CONCLUSIONS

We presented DAHLIA 2.0, a novel visualization tool that
allows us to analyze the database usage of dynamic and

heterogeneous systems by visualizing the links between the
source code and the database. It aims to support database-
program co-evolution in a DISS. Our tool can deal with
systems using several database access technologies together
like ORM. While our data extraction phase (described in
Section III-A) is specifically designed for Java systems, the
visualization relies on a data model detailed in [9] and could
become technology-independent with some minor adaptations.

In the future, we plan to conduct an empirical analysis of
database usage evolution over time, and a study of program-
database co-evolution patterns in DISS. In particular, we wish
to analyze the evolution history of DISS to study the impact
of adopting a new database access technology as well as
the required effort to migrate from a technology to another
one. Finally, our ultimate objective will be to contribute to
(partially) automate the database schema change propagation
process itself, via source code transformation techniques.

REFERENCES

[1] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold.
Localizing SQL faults in database applications. In Proc. of ASE ’11,
pages 213–222. IEEE Comp. Soc., 2011.

[2] M. Golfarelli, S. Rizzi, and A. Proli. Designing what-if analysis:
Towards a methodology. In Proc. of DOLAP ’06, DOLAP ’06, pages
51–58. ACM, 2006.

[3] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically
generated queries in database applications. In Proc. of ICSE ’04, pages
645–654. IEEE Comp. Soc., 2004.

[4] M. A. Javid and S. M. Embury. Diagnosing faults in embedded queries
in database applications. In Proc. of EDBT/ICDT’12 Workshops, pages
239–244. ACM, 2012.

[5] A. Karahasanović. Supporting Application Consistency in Evolving
Object-Oriented Systems by Impact Analysis and Visualisation. PhD
thesis, University of Oslo, 2002.

[6] K. Liu, H. B. K. Tan, and X. Chen. Aiding maintenance of database
applications through extracting attribute dependency graph. J. Database
Manage., 24(1):20–35, January 2013.

[7] A. Maule, W. Emmerich, and D. S. Rosenblum. Impact analysis of
database schema changes. In Proc. of ICSE 2008, pages 451–460, 2008.

[8] L. Meurice and A. Cleve. DAHLIA: A visual analyzer of database
schema evolution. In CSMR-WCRE ’14, pages 464–468, 2014.

[9] L. Meurice, C. Nagy, and A. Cleve. Detecting and preventing program
inconsistencies under database schema evolution. In Proc. of QRS 2016.
IEEE Computer society, 2016. to appear. https://staff.info.unamur.be/
lme/QRS2016/MeuriceEtAl.pdf.

[10] L. Meurice, C. Nagy, and A. Cleve. Static analysis of dynamic database
usage in java systems. In Proc. of CAiSE ’16, LNCS. Springer, 2016.
to appear. https://staff.info.unamur.be/lme/CAISE16/MeuriceEtAl.pdf.

[11] G. Papastefanatos, F. Anagnostou, Y. Vassiliou, and P. Vassiliadis.
Hecataeus: A what-if analysis tool for database schema evolution. In
Proc of CSMR ’08, pages 326–328, April 2008.

[12] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou. What-
if analysis for data warehouse evolution. In IlYeal Song, Johann
Eder, and ThoManh Nguyen, editors, Data Warehousing and Knowledge
Discovery, volume 4654 of LNCS, pages 23–33. Springer, 2007.

[13] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou.
Hecataeus: Regulating schema evolution. In Proc of ICDE 2010, pages
1181–1184, March 2010.

[14] D. Qiu, B. Li, and Z. Su. An empirical analysis of the co-evolution of
schema and code in database applications. 2013.

[15] E. Rahm and P. A. Bernstein. An online bibliography on schema
evolution. SIGMOD Rec., 35(4):30–31, December 2006.

[16] M. Sonoda, T. Matsuda, D. Koizumi, and S. Hirasawa. On automatic
detection of SQL injection attacks by the feature extraction of the single
character. In Proc. of SIN ’11, pages 81–86. ACM, 2011.

[17] R. Wettel and M. Lanza. Codecity: 3d visualization of large-scale
software. In Wilhelm Schfer, Matthew B. Dwyer, and Volker Gruhn,
editors, ICSE Companion, pages 921–922. ACM, 2008.

www.openmrs.org
www.info.fundp.ac.be/~lme/DAHLIA/
https://staff.info.unamur.be/lme/QRS2016/MeuriceEtAl.pdf
https://staff.info.unamur.be/lme/QRS2016/MeuriceEtAl.pdf
https://staff.info.unamur.be/lme/CAISE16/MeuriceEtAl.pdf

