
Establishing referential integrity in legacy
information systems - Reality bites!

Loup Meurice
Faculty of Informatics

University of Namur, Belgium

Fco Javier Bermúdez Ruiz
Faculty of Informatics

University of Murcia, Spain

Jens H. Weber
Department of Computer Science
University of Victoria, Canada

Anthony Cleve
Faculty of Informatics

University of Namur, Belgium

Abstract—Most modern relational DBMS have the ability to
monitor and enforce referential integrity constraints (RICs). In
contrast to new applications, however, heavily evolved legacy
information systems may not make use of this important feature,
if their design predates its availability. The detection of RICs
in legacy systems has been a long-term research topic in the
DB reenginering community and a variety of different methods
have been proposed, analyzing schema, application code and
data. However, empirical evidence on their application for reengi-
neering large-scale industrial systems is scarce and all too often
”problems” (case studies) are carefully selected to fit a particular
”solution” (method), rather than the other way around. This
paper takes a different approach. We analyze in detail the issues
posed in reengineering a complex, mission-critical information
system to support RICs. In our analysis, we find that many of
the assumptions typically made in DB reengineering methods do
not readily apply. Based on our findings, we design a process and
tools for detecting RICs in context of our real-world problem and
provide preliminary results on their effectiveness.

I. INTRODUCTION

Referential integrity is an important quality attribute of
data stored in relational information systems (IS). It refers
to the state where data stored in related tables obeys to the
foreign key (FK) constraints defined between those tables.
Most modern database management systems (DBMS) pur-
posed for business applications provide features for declaring
and automatically enforcing FK constraints. However, many
legacy IS do not use these features - or use them only to a
limited degree (i.e., for more recently developed functionality),
particularly if their original design predates availability of
those mechanisms in the DBMS platform. Such applications
must be reengineered in order to benefit from automated
integrity enforcement. Although the database layer is not the
only option for enforcing RICs (presentation and application
layers are other options), pushing enforcement in this layer
is often seen as the most reliable option to control many
concurrent ”channels” entering data into the system.

From a high level perspective, this reengineering process
consists of two steps, namely FK identification and FK imple-
mentation. Research activity in this area has primarily focused
on the first step (identification), which can be viewed as
a form of design recovery. A wealth of different methods
and tools have been proposed to recover FKs from a variety
of data sources, including the database schema, application
code, data instances, and documentation. While many FK

The first author is supported by the F.R.S.-FNRS via the DISSE project.
The second author was partially supported by the grant number 15389/PI/10

(Science and Technology Agency of the Region of Murcia, Spain).

identification methods have been proposed, empirical evidence
about their comparative effectiveness in real-world industrial
settings remains rare.

In contrast to many other research works that start by
proposing a new or improved solution to the above described
reengineering problem, followed by a validation with problem
case studies (often hand picked to make a point), this paper
starts by studying the actual problem in context of a real-
world, large-scale legacy system in the healthcare industry. As
a result of our analysis, we find that many of the assumptions
commonly made in DB reengineering methods and tools do
not readily apply in practice. Based on our problem analysis
we devise a process for reengineering legacy IS with respect
to establishing referential integrity constraints, incorporating,
combining and extending existing reengineering methods. We
report empirical results of implementing this process in the
context of our problem case study system. Our results suggest
that the process of reengineering legacy IS with respect to
establishing referential integrity constraints may be consider-
ably more complex than is commonly assumed. It must be
understood as an incremental detection process.

II. FOUNDATIONS AND RELATED WORK

In relational databases, referential integrity constraints
(RICs) are usually declared by means of foreign keys. A
foreign key is a simple and intuitive construct through which
a row in a table is used to reference another row in another
table. Considering a table S with key KS on the one hand,
and a set FR of columns of table R on the other hand, if
R.FR −→ S.KS is declared as a foreign key, then for each
row r ∈ R (that is not null) there should exist a row s in table
S such that r.FR = s.KS. In other words, the set of values of
FR that appears in table R must be a part of the set of values
of KS of table S. The foreign key FR acts as a reference to
the rows of S.

Unfortunately, it is not unusual that RICs are left implicit,
i.e., they are not explicitly declared in the DDL1 code of
the database. Several reasons can be identified: the lack of
background in database design in the software development
teams [1], the limitations of the target database platform, or
the necessity to tolerate data inconsistencies [2]. The problem
of undeclared foreign keys elicitation has thus been extensively
studied and a large variety of techniques have been proposed in
the last two decades, each considering a particular information
system artifact as main source of information:

1DDL stands for Data Description Language

(1) Schema analysis [3]–[5]. Spotting similarities in names,
value domains and representative patterns may help identify
hidden constructs such as foreign keys.
(2) Data analysis [6]–[8]. Mining the database contents can
be used to discover implicit properties or to check hypothetic
constructs that have been suggested by the other techniques.
(3) GUI analysis [9], [10]. Forms, reports and dialog boxes
are user-oriented views on the database that exhibit spatial
structures, meaningful names, explicit usage guidelines and, at
runtime, data population and error messages that can provide
information on data structures and constraints.
(4) Static program analysis [11]–[13]. Even simple analy-
sis, such as dataflow graph exploration, can bring valuable
information on field structure and meaningful names. More
sophisticated techniques such as program slicing can be used
to identify complex constraint checking or foreign keys.
(5) Dynamic program analysis [14]. In the case of highly
dynamic program-database interactions, the database queries
may only exist at runtime. Hence recent techniques allowing to
capture and analyse SQL execution traces in order to retrieve,
among others, implicit referential links between columns of
distinct tables.

It is essential to note that none of the above techniques
is generally sufficient to recover all implicit referential con-
straints: there is no formal way to prove that all the undeclared
foreign keys, and only them, have been discovered through a
particular technique. As often, automated analysis techniques
may only suggest possible foreign key candidates with a
certain level of confidence. In addition, the availability of
a ground truth, allowing to evaluate a particular detection
technique, is not a realistic working assumption in the context
of large legacy systems.

III. PROBLEM CASE STUDY: OSCAR

Our case study is an open-source information system that
is widely used in the healthcare industry in Canada, called
OSCAR. OSCAR is a so-called Electronic Medical Record
(EMR) system whose primary purpose is to maintain electronic
patient records and interface with a variety of other information
systems used in the healthcare industry. OSCAR has been
developed since 2001, originally by the Department of Family
Practice at McMaster University. Current development activ-
ities are coordinated by a not-for-profit company (“OSCAR
EMR”), under an ISO 13485 certified development process.

OSCAR has been using MySQL as its DBMS platform.
MySQL supports the choice of different alternative storage
engines. During the first five years of OSCAR development,
MySQL did not support a storage engine capable of enforcing
referential integrity. Consequently, OSCAR’s database imple-
mentation does not make significant use of FK constraints
but rather consists of seemingly unrelated tables. Over the
last several years, OSCAR has been migrating to MySQL’s
newer InnoDB storage engine, which provides full support for
referential integrity enforcements. Since then, more recently
developed parts of the system have made use of FK constraints.
Still, the vast majority of the database tables remain without
any explicit relationships in the schema. This situation has
been a frequent source of frustration in the OSCAR developer
community as it impedes program understanding and mainte-
nance. It has also raised concerns with respect the integrity

of patient health information and, ultimately, patient safety.
Therefore, it has been a goal to reengineer OSCAR with
respect to establishing more referential integrity constraints.

We encountered a number of challenges in our case study:
Size One obstacle in this process is the sheer size of the
database schema. With close to five hundred tables and some
of the larger tables comprising over thousands of columns,
identifying FKs cannot be a manual process but requires
automated tool support.
Multi-paradigm architecture Another challenge is the unevenly
evolved nature of the OSCAR architecture, which uses a
multitude of different paradigms to access the database. Some
older application modules still use embedded (dynamic) SQL
queries, while newer modules use object-relational middle-
ware descriptors (Hibernate mapping files), and yet newer
application code uses code annotation tags based on the Java
Persistence Architecture (JPA) standard. Therefore, no single
method for detecting FKs in application code is likely to recall
all relevant relationships.
Confidential data Knowledge about the actual database in-
stances is an important prerequisite for the process of iden-
tifying RICs. It is not uncommon that the data in legacy
information systems is considered business confidential. How-
ever, patient records are among the most sensitive and highly
regulated information items in any industry and they cannot
commonly be made available for the purpose of software
engineering, even under non-disclosure agreements. We had
to create software and a process to securely encrypt the data
prior to FK analysis and attain approval from the University
ethics board prior to our reengineering study.

IV. REENGINEERING PROCESS

The reengineering process applied in this study starts with
the identification of implicit integrity constraints through the
triangulation of several RIC identification techniques. We
present a process to address the RIC detection in a legacy
system through the joint analysis of multiple sources of in-
formation: the database schema, the database contents and the
program source code. The results obtained by each analysis
technique are then combined in order to find a certain number
of likely foreign key candidates. In the following, we describe
each analysis step we follow in our reengineering process.

A. Schema Analysis

The Schema Analysis process is guided by the primary key
constraints found in the tables of the schema. Each column
colPK contained in a primary key of a table is used to search
for other columns in the database schema that could reference
it. Algorithm 1 specifies this process. We use tabPK and colPK
variables to refer to the table and the column, respectively, of
the primary key side.

Algorithm 1 Schema Analysis algorithm
result ← ∅
for tabPK ∈ schema do

for colPK ∈ tabPK.constraintPK do
result ← result + SearchForFK(tabPK, colPK)

end for
end for
return result

In the SearchForFK function, columns are searched based
on their names and data types (SQL type, length and precision)

as we show in Algorithm 2. Variables table and column are
used to refer to the table and the column, respectively, analyzed
as a candidate foreign key.

Algorithm 2 SearchForFK function
procedure SearchForFK(tabPK, colPK)

result ← ∅
for table ∈ schema do

for column ∈ table do
if column 6= colPK then

if column.type = colPK.type
& column.length ≥ colPK.length
& column.precision ≥ colPK.precision
& EqualsNames(table, column, tabPK, colPK)
then

result ← result + (tabPK, colPK, table, column)
end if

end if
end for

end for
return result

end procedure

The EqualsNames function returns true if the names of the
columns and tables analyzed are compatible, and returns false
otherwise. The meaning of compatible is based on the partial
matching of the table and column names, according to their
length. The function checks the length of the column name
colFK considered as foreign key candidate. If the length ≥
5 characters we check whether the target table name tabPK
and/or the target column name colPK is included in colFK
(only if its length is > 2, otherwise we consider that this
name is not meaningful enough). If the length of colFK is
< 5 characters we do not check if tabPK is contained in
colFK (because we consider that names are not meaningful)
and we only check the length of colPK. If it is > 2, we
check if colPK is contained in colFK. Otherwise, we could
suppose that colPK has a name like ’id’ or something similar.
In this scenario, a specific check is performed: we eliminate
in colFK the occurrences of colPK and some other special
characters like ’ ’. Then, we verify if the resulting name is
part of tabPK. Let us illustrate this using an example. We
could have a colFK named ’prid’ which would be analyzed
in relation to a colPK named ’id’ in a table named ’provider’.
After elimination of the colPK from colFK, we would have
the string ’pr’ which would be contained in tabPK.

B. Data Analysis

The Data Analysis process utilizes the results generated by
the Schema Analysis process as starting point. This approach
is usually a necessity for large-scale legacy databases, as a
brute-force data analysis with respect to detecting all potential
foreign keys is usually computationally prohibitive.

Algorithm 3 Data Analysis algorithm
result ← ∅
for (tabPK.colPK, tabFK.colFK)
∈ set(tabPK.colPK, tabFK.colFK) do

countPKReg ← select count(∗) from tabPK
countFKReg ← select count(∗) from tabFK
matching ← select colFK from tabFK

intersect all
select colPK from tabPK

percentage ← (matching ∗ 100)/countFKReg
if percentage ≥ threshold then

result ← result + (tabPK, colPK, tabFK, colFK)
end if

end for
return result

Algorithm 3 shows how the data analysis is applied. Taking
a set of foreign key candidates, the algorithm calculates the
matching of values involved on each candidate. This matching
defines how many values in tabFK.colFK can be found in

tabPK.colPK. This matching value must be measured in rela-
tion to the number of rows in tabFK to calculate the percentage
of matching values. The number of rows in tabPK is reported
for better interpreting that percentage.The algorithm is set up
by means of a threshold value which is established to only
return candidate foreign keys (tabPK, colPK, tabFK, colFK)
having a percentage value above the threshold value.

C. Static SQL Analysis

Some technologies allow one to embed SQL sentences in
business logic code. For instance, the JDBC API2 on the Java
platform can embed strings (using double quotes) defining
SQL sentences as parameters. One could either define complete
SQL sentences or build such sentences using several fragments
of SQL code. Our Static SQL Analysis process enables to
analyze the programs source code in order to identify, parse
and exploit the SQL code fragments they contain. It is a linear
process composed of 5 steps, where the output of one step
constitutes the input of the next step. This process has first to
identify the Java files implementing the OSCAR client applica-
tions. Then, it has to parse those source code files searching for
literal strings containing SQL SELECT sentences. Once these
sentences have been retrieved, they are parsed to extract the
FROM and WHERE clauses. A join condition in a WHERE
clause must comply with the following syntax: ’columnA =
columnB’, where columns could be prefixed by table alias or
table names. As future work, we will consider other ways to
define a join, e.g., using the in operator and nested queries. We
assume in our analysis process that literal strings composing
an SQL sentence are adjacent and properly ordered. We need
to make this assumption as we use static analysis and the
program code is not interpreted by our analyzer. Below, we
briefly explain how the program analysis process is carried
out by executing five distinct steps:
Step 1: A parser is used to extract string literals, i.e. sequences
of characters between two delimiters, in each Java file of the
OSCAR system. Delimiters are special language-dependent
characters, like the double-quote or the single-quote.
Step 2: We analyze the strings obtained so far and all
those which are not related to a SQL SELECT statement
are discarded. We assume that a string is only related to a
SELECT statement if it does contain some keywords of the
SQL SELECT statement syntax or some table and column
names occurring in the legacy database schema.
Step 3: We re-create a complete SELECT sentence by con-
catenating two or more strings. To do this, information about
the string in needed like: the name of the Java file where it
was found, the line number in the file and the position of the
first character in the line.
Step 4: We extract the FROM and WHERE clauses from
the resulting SELECT sentences. A pre-parsing step deals
with discarding literal strings included after Step 3 but which
generate noise due to the presence of parameters that are only
determined at runtime.
Step 5: We analyze the content of the WHERE clauses,
searching for a join condition and resolving the identity of
each column involved in it, by using the table definitions in
the FROM clause.

2Java Database Connectivity

D. Hibernate Analysis

A large part of the OSCAR applications uses the Hibernate
Object-Relational Mapping (ORM) to access the database.
Hibernate allows developers to map Java classes to database
tables. Those mappings are usually declared in a mapping
file (an XML document) that instructs Hibernate how to
map the Java classes to the database tables. We consider the
Hibernate XML mapping files as another possible way to infer
implicit foreign keys. Even if an ORM such as Hibernate
offers an abstraction layer permitting to ignore the underlying
database structures (and thus the presence of FKs), we consider
that some legacy systems could use Hibernate to access to
legacy databases with missing constraints (like OSCAR). Our
Hibernate parser searches in each mapping file for a ’class’ tag,
where an entity name is mapped to a table name by means of
’name’ and ’table’ attributes, respectively. If both names are
equals, ’table’ attribute could be omitted. In a similar way,
the attributes in an entity are declared by a ’property’ tag and
’name’ and ’column’ attributes. Declarations of RICs can be
defined using the following tags: ’one-to-one’, ’many-to-one’,
’one-to-many’ and ’many-to-many’. Different kinds of RICs
are permitted in a mapping file. We illustrate below some of
the most common techniques:

Many-to-one relationships In the example below, the developer
defined a many-to-one constraint between the tickler table and
the tickler update table mapped to TicklerUpdate class. In such
a case, we can infer a foreign key from table tickler update
to table tickler. Our hibernate parser identifies the ’name’
attribute as the foreign key column, and the ’class’ and
’column’ attributes as the target primary key.
<c l a s s name=” T i c k l e r U p d a t e ” t a b l e =” t i c k l e r u p d a t e ”>
<many−to−one name=” t i c k l e r ” c l a s s =” T i c k l e r ”
column=” t i c k l e r n o ” u p d a t e =” f a l s e ” i n s e r t =” f a l s e ” l a z y =” f a l s e ” />

Many-to-many relationships In the example below, the devel-
oper defined a multi-valued association. The Hibernate parser
identifies the ’name’ attribute of ’set’ tag as a foreign key
column, and the ’class’ and ’column’ attributes contained in
’many-to-many’ tag as the target primary key. But in this case,
since an intermediate table must be referenced for both foreign
keys, the ’table’ attribute in the ’set’ tag is needed to refer to
an intermediate table name.
<c l a s s name=” S i t e ” t a b l e =” s i t e ”>
<s e t name=” p r o v i d e r s ” t a b l e =” p r o v i d e r s i t e ” l a z y =” t r u e ” i n v e r s e =” t r u e ”>

<key column=” s i t e i d ” />
<many−to−many column=” p r o v i d e r n o ” c l a s s =” P r o v i d e r ” /></ s e t>

SQL query declarations Hibernate also allows developers to
directly use SQL queries in the mapping file. Those queries
could be a good indicator for inferring RICs too, especially
when the query consists of a join between two tables.

E. JPA Analysis

JPA3 is a Java specification for persistence programming
which describes the management of relational data in applica-
tions. JPA is a generic standard, independently of any partic-
ular ORM middleware. Different concrete ORM middleware
products support JPA, including the aforementioned Hibernate
middleware. However, using Hibernate “the JPA way” consists

3Java Persistence API

Fig. 1: Initial report

in using Java code annotations rather than XML mapping
files to specify how persistent objects and their relationships
are mapped to relational table structures. The most recent
OSCAR components use JPA annotations rather than Hibernate
mapping files. We therefore implemented a parser for JPA code
annotations. For each JPA entity file a ’Table’ annotation is
searched, where an entity name is mapped to a table name by
means of the ’name’ attribute. If both names are equal, the
’Table’ annotation can be omitted. Declarations of RICs are
defined using one of the following annotations: ’ManyToOne’,
’OneToMany’ and ’ManyToMany’. For instance, the following
one-to-many annotation expresses the same RIC as in our
Hibernate example. The ’JoinColumn’ annotation contains
attributes to define the foreign key column (’name’) and the
column of the target primary key (’referencedColumnName’).
The table name containing the RIC is obtained from the entity
class, and the table name referenced by the RIC is obtained
from the class type in the attribute defining the relationship.
@Table (name = ” t i c k l e r ”)
p u b l i c c l a s s T i c k l e r { . . .

@OneToMany (f e t c h = FetchType .EAGER)
@JoinColumn (name=” t i c k l e r n o ” , referencedColumnName=” t i c k l e r n o ”)
p r i v a t e Set<T i c k l e r U p d a t e> u p d a t e s = new HashSet<T i c k l e r U p d a t e >() ;
. . . }

V. RESULTS

As described above, we have implemented 5 different
techniques for recovering implicit RICs. In this Section, we
present the results obtained by combining those techniques
and describe our chosen strategy for accepting and rejecting
the RICs identified. After applying those techniques on the
OSCAR system, we extracted 1.899 FK candidates. Figure 1
illustrates the distribution through the 5 techniques: 1.818 FK
candidates were detected by the schema analysis; 291 by the
data analysis; 28 by the Hibernate analysis; 32 by the JPA
analysis, and 50 by the static SQL analysis.

Another iteration was required for further exploiting those
first results. We defined a list of criteria allowing us to accept
a FK candidate. Each candidate FK respecting at least one of
those criteria is accepted.
1. The FK is proposed by the schema analysis and has a
matching percentage above or equal to 90%.
2. The FK is proposed by the Hibernate analysis.
3. The FK is proposed by the JPA analysis.
4. The FK is proposed by the SQL static analysis and it refers
to a primary/unique key.

After applying those criteria, we moved from 1.899 poten-
tial to 215 accepted candidates. The 1.684 remaining ones are

Fig. 2: Accepted FKs using our accept./reject. criteria.

considered as unlikely. In order to reach higher precision in
our results, we also considered 4 rejection criteria.
1. Matching The unlikely candidates having a data matching
value lower than 90% are rejected.
2. Bi-directionality The unlikely candidates such as there exists
an accepted candidate in the opposite direction, are rejected.
3. Unicity The unlikely candidates such as there exists an ac-
cepted candidate defined on the same column(s), are rejected.
4. Transitivity The accepted candidates that could be transi-
tively derived from other accepted candidates are rejected.

Figure 2 represents the distribution of the accepted candi-
dates through the 5 information sources after having consid-
ered our rejection criteria: 146 unlikely candidates have been
rejected because they do not respect the minimal matching
value; 1.219 unlikely candidates have been rejected by unicity;
23 unlikely candidates by bi-directionality while 37 previously-
accepted candidates have been rejected by transitivity.

VI. DISCUSSION AND CONCLUSIONS

Observations The results obtained when identifying FK candi-
dates in OSCAR yield to some interesting concluding observa-
tions. First, we observe that the different sources of information
have different levels of reliability. Although we do not know
the actual list of implicit foreign keys that are valid in OSCAR,
we can already say that the schema analysis technique may
lead to overly noisy results when used in isolation. However,
there is no perfect source of information that would, alone,
be sufficient for identifying all implicit FKs. For instance,
while the Hibernate mapping file and the JPA annotations are
reliable sources of information, they allowed us to recover a
very limited subset of the implicit FKs in the OSCAR schema,
i.e., those involved in the most recent tables. This observation
directly relates to the evolution history of the system. We saw
that the management of implicit RICs in a system may be
largely inconsistent over time. Some old RICs have never been
explicit declared, some more recent ones have been specified
through Hibernate, and some others have been declared via JPA
annotations. Hence, the RIC detection approach we propose in
this paper, based on the triangulation of several RIC identifica-
tion techniques for confirming/rejecting RIC candidates, seems
very promising in the context of a legacy system that has been
subject to a long evolution history.

Limitations Although it has shown some merits, our multi-
source FK identification process suffers from several limita-
tions. First, the threshold of 90% for the data consistency
heuristics could be further validated and calibrated with respect
to the number of rows in the referencing table. In addition,
since we did not have access to a ground truth, it was difficult

for us to precisely quantify the reliability and the complemen-
tarity of the different identification techniques we combine.
This will be a prerequisite to further improve our triangulation
process and devise a more accurate FK candidate ranking
method. Finally, as we mentioned above, some OSCAR tables
involved in a RIC candidate being empty, our results are
partially incomplete as well.

Future work We anticipate several directions for future work
in the context of RIC reengineering. First, we intend to
further investigate the OSCAR case study, and to involve the
developers in the establishment of a ground truth, even partial.
Second, we plan to consider other sources of information for
the identification and ranking of RIC candidates. We think, in
particular, of integrating historical information. For instance,
let us assume that the history analysis reveals that the same
developer has created both tables involved in a RIC candidate,
this could be seen as an additional confirmation argument. In
contrast, if a RIC candidate involves two very recently created
tables the names of which do not appear in the Hibernate
file nor in the JPA annotations, this could be considered
as a rejection argument. Last but not least, we intend to
devise a tool-supported methodology for assisting developers
to incrementally implement identified RIC candidates in a
legacy software system as well as we plan to consider using
the LSD approach [15] to generalize the parsing of tags.

REFERENCES

[1] M. R. Blaha and W. J. Premerlani, “Observed idiosyncracies of rela-
tional database designs,” in Proc. of WCRE’95. IEEE CS, 1995.

[2] R. Balzer, “Tolerating inconsistency,” in Proc. of ICSE’91. IEEE CS,
1991, pp. 158–165.

[3] S. B. Navathe and A. M. Awong, “Abstracting relational and hierarchical
data with a semantic data model,” in Proc. of ER’87, 1988, pp. 305–333.

[4] V. M. Markowitz and J. A. Makowsky, “Identifying extended entity-
relationship object structures in relational schemas,” IEEE TSE, vol. 16,
no. 8, pp. 777–790, 1990.

[5] W. J. Premerlani and M. R. Blaha, “An approach for reverse engineering
of relational databases,” CACM, vol. 37, no. 5, pp. 42–ff., 1994.

[6] R. H. L. Chiang, T. M. Barron, and V. C. Storey, “Reverse engineering
of relational databases: extraction of an eer model from a relational
database,” Data Knowl. Eng., vol. 12, no. 2, pp. 107–142, 1994.

[7] S. Lopes, J.-M. Petit, and F. Toumani, “Discovering interesting inclusion
dependencies: application to logical database tuning,” Inf. Syst., vol. 27,
no. 1, pp. 1–19, 2002.

[8] H. Yao and H. J. Hamilton, “Mining functional dependencies from
data,” Data Min. Knowl. Discov., vol. 16, no. 2, pp. 197–219, 2008.

[9] J. F. Terwilliger et al., “The user interface is the conceptual model,” in
Proc. of ER’06, ser. LNCS, vol. 4215. Springer, 2006, pp. 424–436.

[10] R. Ramdoyal, A. Cleve, and J.-L. Hainaut, “Reverse engineering user
interfaces for interactive database conceptual analysis,” in Proc. of
CAiSE’10, ser. LNCS, vol. 6051. Springer, 2010.

[11] J.-M. Petit et al., “Using queries to improve database reverse engineer-
ing,” in Proc. of ER’94. Springer-Verlag, 1994, pp. 369–386.

[12] G. A. Di Lucca, A. R. Fasolino, and U. de Carlini, “Recovering class
diagrams from data-intensive legacy systems,” in Proc. of ICSM’00.
IEEE Computer Society, 2000, p. 52.

[13] A. Cleve, J. Henrard, and J.-L. Hainaut, “Data reverse engineering using
system dependency graphs,” in Proc. of WCRE’06. IEEE CS, 2006,
pp. 157–166.

[14] A. Cleve, N. Noughi, and J.-L. Hainaut, “Dynamic program analysis
for database reverse engineering,” in GTTSE. Springer. LNCS, 2012.

[15] A. Doan, P. Domingos, and A. Halevy, “Learning to match the schemas
of data sources: A multistrategy approach,” Machine Learning, vol. 50,
no. 3, pp. 279–301, 2003.

