DAHLIA: A Visual Analyzer of Database Schema
Evolution

Loup Meurice and Anthony Cleve
PReCISE Research Center, University of Namur, Belgium
{loup.meurice,anthony.cleve } @unamur.be

Abstract—In a continuously changing environment, software
evolution becomes an unavoidable activity. The mining software
repositories (MSR) field studies the valuable data available in
software repositories such as source code version-control systems,
issue/bug-tracking systems, or communication archives. In recent
years, many researchers have used MSR techniques as a way
to support software understanding and evolution. While many
software systems are data-intensive, i.e., their central artefact is
a database, little attention has been devoted to the analysis of this
important system component in the context of software evolution.
The goal of our work is to reduce this gap by considering the
database evolution history as an additional information source to
aid software evolution. We present DAHLIA (DAtabase ScHema
EvoLutlon Analysis), a visual analyzer of database schema
evolution. Our tool mines the database schema evolution history
from the software repository and allows its interactive, visual
analysis. We describe DAHLIA and present our novel approach
supporting data-intensive software evolution.

I. INTRODUCTION

In an ever-changing environment, software system evolution
is ubiquitous. Over last decades, the research community has
largely studied this activity. In particular, it has been shown
that understanding the evolution history of complex software
systems can significantly aid reengineering and evolution
processes. Mining software repositories (MSR) techniques
provide an ideal way to extract historical data allowing an
in-depth analysis of system evolution. Most research works
in the MSR field focus on common software artefacts (e.g.,
the program source code, bug reports, mail archives, etc.). In
contrast, fewer works have considered the database component
as main artefact of interest. However, the database occupies
an increasingly important place in today’s software systems,
particularly in data-intensive systems. In this work, we con-
sider that the understanding of the database schema, and of
its evolution, may also contribute to the understanding of the
system as a whole.

Our main objective in this paper is to recover a precise
knowledge of the evolution history of the database schema
because it constitutes an important element for gaining an
understanding of the database. We propose a fully generic
tool-supported approach (1) allowing one to extract such
a historical knowledge from a software project repository
and (2) proposing an interactive visualization for analyzing
database schema history. This approach is implemented
through DAHLIA, a visual analyzer of database schema
evolution.

II. RELATED WORK

Existing works in this domain analyze the evolution of
rather small database schemas. Curino et. al [2] present an
empirical study of database schema evolution on Wikipedia.
They analyze basic information of schema evolution, such
as schema size growth, and lifetime of tables and columns.
They also provide a classification of schema changes and they
study the frequency distribution of those schema changes. The
authors propose, in addition to a schema evolution statistics
extractor, a tool that operates on the differences between
subsequent schema versions and semi-automatically extracts
the set of possible schema changes that have been applied.
Qiu et. al [5] conduct a large-scale empirical study on ten
popular database applications to analyse how schemas and
application code co-evolve. In particular, they study the evo-
lution histories from the respective repositories to understand
whether database schemas evolve frequently and significantly,
how schemas evolve and impact the application code.

III. APPROACH

The objective of our tool-supported approach is three-
fold: extracting, representing and exploiting the history of
a database schema. Our approach consists in extracting and
comparing the successive versions of the database schema
in order to produce the so-called historical schema. This
historical schema is a visual and browsable representation of
the database schema evolution over time. The global process
followed by our approach can be divided into four steps [4]:

e SQL code extraction: we first extract all the SQL files
corresponding to each system version, by exploiting the
versioning system (e.g., GIT/SVN repository).

e Schema extraction: we extract the physical schema cor-
responding to each SQL file.

« Historical schema extraction: we build the corresponding
historical schema by comparing the successive physical
schemas.

e Visualization & exploitation: the historical schema can
then be visualized and queried to obtain meaningful his-
torical information about the database schema evolution.

Figure T| shows two examples of database schema evolution.
The left-hand size of the first example (1) illustrates three
successive schema versions. Schema S is the oldest one and
schema Sj is the most recent. We can see that between S7 and
S5, column A, has been deleted, column By has been created

as well as table D and its columns. Moreover the entire table
C has been dropped. In S, table B has disappeared, table
D is unchanged, and table C' has re-appeared. The historical
schema derived from the first example is depicted at the right-
hand side. The historical schema is a global representation of
all database schema versions, that contains all objects that have
ever existed in the entire schema history. Furthermore, each
object of the historical schema is annotated with the following
meta-attributes:

- listO f Presence: the list of schema version dates where
the object is present.

- listO f Deletion: the list of schema version dates where
the object has been deleted.
Example (2) shows a simpler schema evolution. In Sy, ta-
ble A has columns A; and A,. In S5, the two columns
are still present but the datatype of A; has changed (A}).
The corresponding historical schema must contain this his-
torical information, and therefore we introduce a new kind
of objects called sub-column. Each sub-column represents
a datatype change of the parent-column. Moreover, a sub-
column is annotated with the meta-attribute creationDate
corresponding to the schema version date of the change. Up
to now, the historical information contained in the historical
schema allows one to identify 13 categories of atomic database
changes between successive schema versions: adding/dropping
a table; adding/dropping a column; changing the column
datatype; adding/dropping an identifier; adding/dropping an
index; adding/dropping a foreign key; renaming a column or
table.

Historical schema

(1

Schema 51 Schema 52 Schema 53

= —-
a [=][=] [+] [o]
| [2] |a Bl | [or .
42 a B2 | [p2 x5 ||e | |;2

Historical schema
Schema 51 Schema 52
[a] [a] [Y
“ I
a2 a2 ar
a2

Fig. 1.
schema.

= e]
EEE]
5R]E

Two schema evolution examples and their corresponding historical

DAHLIA provides the user with a visual and browsable
representation of the database schema evolution history. It
takes the historical schema as input and allows one, among
others, to (1) compare two arbitrary schema versions, (2)
extract the database schema at a given date, (3) extract the
complete history of a particular schema object (column/table),
(4) extract various statistics about the evolution of the database
schema, (5) analyze the involvement of each developer in that
evolution. DAHLIA is implemented as a Java plugin of DB-
MAIN [3]. DB-MAIN is a generic database engineering tool
with integrated support for database design, reverse engineer-
ing, re-engineering, integration, maintenance and evolution.

IV. DAHLIA: A VISUAL ANALYZER OF DATABASE
SCHEMA EVOLUTION

DAHLIA provides two visualization modes: 2D and 3D.
Figure [2| depicts the main 2D user interface, after having
loaded a given historical schema. This mode proposes an inter-
active panel allowing one to manipulate the physical objects
of the historical schema and query their respective history.
This historical schema includes all physical objects that have
ever existed in the entire schema history: tables, columns,
identifiers (ID), foreign keys (FK) and indexes (INDEX).

The 3D mode makes use of the well-known city metaphor
of CodeCity [6] (see Figure] for an example). In DAHLIA, a
building represents a table, the number of columns is mapped
on the building height while the base size represents the
number of schema changes happened during the table life.
The mapping between the database schema metrics and the
visual metrics can be (re)configured by the user. That 3D
visualization is particularly suitable for analyzing very large
database schemas.

Visualization x
intake node template intake node type intakerequiredfields
intake node template_id name fieldKey
intake node type id type isRequired

remote_intake node template id intake node type id ID: fieldRey

INDEX: fieldKey

intake node label id ID: intake node type id
ID: intake node template id /IITDEX: intake node type id|
FK: intake nede type_id
INDEX: intake node label id
INDEX: intake node type id
INDEX: intake ngde t;mpla;e id

Fig. 2. An example of historical schema - 2D visualization.

A. Filtering and Comparison

DAHLIA proposes the user a filtering functionality al-
lowing displaying the database schema version corresponding
to an input date. A schema-diff feature is also implemented
and gives the opportunity to compare two different schema
versions. It helps the user to analyze how the schema has
evolved over time.

B. History Analysis

DAHLIA offers diverse features for extracting historical
knowledge about schema evolution. The first one gives a first
insight about the longevity of the physical objects. Our tool
assigns a colour to each object depending on its age and
liveness. All objects depicted in green constitute the objects
which are still present in the latest schema version, while all
red objects have been dropped. The colour shades corresponds
to the age of the objects. A dark red object is an object
that has been dropped a long time ago, whereas a light red
object is an object that has recently been removed from the
schema. The darker the green, the older the object is, and vice
versa. Figure [3]and [d] show an example of colourized historical
schema as it can be viewed, respectively, in 2D and 3D mode.

Visualization

Fig. 3. An example of colourized historical schema displayed in DAHLIA
2D mode. The table secuserrole is a particular table of the historical schema.

3D Visualization

Fig. 4. An example of colourized historical schema displayed in DAHLIA
3D mode.

The second category of historical knowledge that can be
extracted is related to the change history of a given object.
Indeed, during its lifetime, a schema object may be subject to
several successive changes, including creation, deletion, mod-
ification, reappearance (re-created after having been dropped).
DAHLIA permits to extract and analyze such a change
history.

C. Statistics Extraction

Various statistics about the evolution of the database schema
can be automatically obtained thanks to DAHLIA. The user
can easily analyse the general trends of the schema evolution
such as the evolution of the number of the tables/columns over
time, the number of created/deleted physical object through the
schema versions, etc. Other statistics related to the developers
involvement can be visualized with DAHLIA. Those statistics
allows the rapid identification of the database schema experts,
as well as the developers that are the most familiar with a
given schema fragment. The tool also measures the stability of
the tables and columns, which can be useful in the context of
database migration. A table that has been created a long time
ago,and that has not been subject to frequent modifications,

can be considered stable. DAHLIA also provides statistics
about the different change types applied to the schema during
its lifetime.

D. Support for Implicit Renaming Detection

Detecting a table/column renaming is an easy process when
the SQL migration scripts between successive schema versions
are available. However, in case of absence of such scripts,
the task becomes much more complex. Indeed, if table A is
renamed as B, there is no direct way to detect it and the
historical schema considers that table A has been dropped
while table B has been created without keeping a link between
both tables. In such a case, we see that a finer-grained
approach is required. This is why DAHLIA proposes a semi-
automatic approach supporting the identification of implicit
(column/table) renamings. Our visualization tool computes the
most likely implicit renamings according to different compar-
ison criteria (e.g., name similarity, the column type similarity,
etc.). This problem can be expressed as an optimization
problem subject to constraints solvable with a well-known
mathematical method called linear programming (LP). LP is
a specific case of mathematical programming allowing one to
achieve the best outcome in a given mathematical model.

V. DAHLIA APPLIED TO REAL-LIFE CASE STUDIES

We selected 4 popular open-source database applications
from different domains, and we used DAHLIA to analyze the
evolution of their database.

¢ OSCAR system: OSCAR (Open Source Clinical Ap-
plication Resource) is full-featured Electronic Medical
Record (EMR) software system for primary care clinics.
It is widely used in hundreds of clinics across Canada.
Figure [3] depicts the historical schema of OSCAR. The
OSCAR system is further analyzed in [1].

o MediaWiki: MediaWiki is a free and open source wiki
software, used to power wiki websites such as Wikipedia,
Wiktionary and Commons, developed by the Wikimedia
Foundation and others.

o TikiWiki: TikiWiki is a free and open source wiki-based,
content management system and Online office suite.

o PrestaShop: PrestaShop is a free, open source e-
commerce solution.

Table [[] describes the 4 studied projects, the study period
and their evolution. The history of OSCAR and MediaWiki
has been extracted from their respective GitHub repository,
while PrestaShop and TikiWiki use SVN as version con-
trol system. DAHLIA allows the automatic extraction of
the schema history from those two popular version control
systems, i.e., Git and SVN. Table [lIl shows, for each project,
the distribution of the 13 atomic database change types defined
in Section [T} The most frequent operation is the modification
of the column datatype. Furthermore, one notices the general
evolution trend is adding new structures, especially columns,
tables and indexes. The developers rarely remove existing data
structures. The figures of Table [[I] have been automatically
produced by DAHLIA.

TABLE 1
The 4 studied database applications and their evolution.

Project Studied Period #Tables #Columns #Versions
OSCAR | 07/2003 — 06/2013 | 88 — 445 | 2443 — 13364 670
MediaWiki | 05/2003 — 08/2013 | 17 — 50 100 — 337 359
TikiWiki | 12/2006 — 07/2013 | 206 — 248 | 1525 — 1974 623
PrestaShop | 12/2008 — 09/2012 | 113 — 157 564 — 890 229
TABLE II

Distribution of schema changes.

Change type (%) Oscar | MediaWiki | TikiWiki | PrestaShop
Adding table 9.7 9.6 194 19.6
Dropping table 1.5 39 34 1.7
Adding column 28.7 15.7 14.7 14.9
Dropping column 3.5 54 2.5 2.6
Adding ID 0.8 2.5 1.6 2.7
Dropping ID 0.3 0.9 1.4 0.7
Adding FK 0.05 0 0 0
Dropping FK 0.2 0 0 0
Adding index 23 12.5 54 14.7
Dropping index 0.4 4.3 2.3 2.3
Changing column datatype| 41.6 44.1 48.8 39.6
Renaming table 0.2 0.11 0.1 0.1
Renaming column 10.6 0.9 2.5 1

As previously explained, DAHLIA allows an in-depth
analysis of the evolution of a given schema object. Figure [3]
depicts a particular fragment of the OSCAR historical schema.
It shows the complete history of column PROGRAM _ID.
The column has been created on 29 April 2012 by the
developer identified by matthew.ma20110628Qgmail.com.
Then, the column has been removed on 15 February 2013
by anniezhou91@Qgmail.com and has immediatly been re-
created on the same day by marc@mdumontier.com. The
column has been finally dropped on 25 February 2013 by
the same developer. This evolution history gives additional
information about how the object has evolved over time. But
more generally DAHLIA helps answering some primordial
evolution questions such as “who are the specialists of that
table/part of the database?”, ”who is the most appropriate (e.g.,
most experienced or most qualified) person for achieving a
particular database-related activity?”.

secuserrole validations waitinglist waitinglistname

poaition
listID

role no name is history

name

role_name id

maxLength group_no

act is_history

provider_no mintength | |aemograpnic no create_date
—
[=] History: vacancy_template[PROGRAM_I el |
[| Dates Event Committer
2012-04-29(13h35m09s) = |creaTiON | | matthew.ma20110628@amail.com |

DELETION
REAPPEARANCE
DELETION

2013-02-15(23h13m22s)
2013-02-15(23h58m47s)
|_[|2013-02-25(09h21m32s)

anniezhou91@gmail.com
marc@mdumontier.com
marc@mdumontier.com

[l
1
[l

Fig. 5. The complete history of column PROGRAM _ID

Figure [6] shows the involving of the developers of each
studied project. Each slice corresponds to a developer and its

size represents the number of distinct tables impacted by the
developer (by creating, updating or deleting the table). Those
figures have been automatically generated by DAHLIA. One
can see the distribution of the OSCAR and MediaWiki devel-
opers is quite homogeneous (fewer specialists), whereas the
majority of the database changes of TikiWiki and PrestaShop
is performed by a single person.

OSCAR MediaWiki TikiWiki PrestaShop

dIOO

Fig. 6. Information about the developers involved in the evolution of the
database schema - a slice corresponds to the number of tables impacted by a
developer (one slice per developer).

VI. CONCLUSION

We presented DAHLIA, a novel visualization tool that
allows us to analyze the evolution history of a database over
its lifetime. This work definitely opens several important new
research and collaboration perspectives for the entire software
evolution research community. Indeed, considering the link
between the evolution of the database and the evolution of all
the other software artefacts remains a largely unexplored yet
important research domain. Thanks to DAHLIA, we could
conduct empirical studies on other projects in order to answer
some general evolution questions such as: (1) How do database
schemas evolve? (2) What are the most common evolution
patterns that can be observed within and across data-intensive
software systems (DISS)? (3) How do database (schemas) and
programs co-evolve in a DISS? (4) What are the most frequent
co-evolution patterns that can be observed?

ACKNOWLEDGEMENTS.

This work has been supported by the F.R.S.-FNRS, in
the context of the DISSE research project, carried out in
collaboration with the University of Mons.

REFERENCES

[1] A. Cleve, M. Gobert, L. Meurice, J. Maes, and J. Weber. Understanding
database schema evolution: A case study. Science of Computer Program-
ming, 2014.

[2] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo. Schema evolution in
wikipedia - toward a web information system benchmark. In ICEIS (1),
pages 323-332, 2008.

[3] DB-MAIN. Official website. http://www.db-main.be.

[4] M. Gobert, J. Maes, A. Cleve, and J. Weber. Understanding schema

evolution as a basis for database reengineering. In Proceeding of 29th

1IEEE International Conference on Software Maintenance (ICSM 2013).

IEEE CS, 2013.

D. Qiu, B. Li, and Z. Su. An empirical analysis of the co-evolution of

schema and code in database applications. In Proc. of ESEC/FSE, pages

125-135, New York, NY, USA, 2013. ACM.

[6] R. Wettel and M. Lanza. Codecity: 3d visualization of large-scale
software. In W. Schfer, M. B. Dwyer, and V. Gruhn, editors, /CSE
Companion, pages 921-922. ACM, 2008.

[5

—

APPENDIX S Vissaization |

During the tool demonstration, we will present DAHLIA T Tl [

and its contribution to support the analysis of data-intensive curentasatessseneme 51
0 e=———— &m0

ft lution.
software evolution (@] e]

1) We will first observe the MediaWiki database evolu-
tion by showing all the physical schemas (and their
differences) resulting from the schema extraction phase,
described in Section [[T). Those schemas will have been
extracted beforehand from the project’s repository.

2) Then, we will build the corresponding historical schema
(historical schema extraction phase of Section [[I). Dur-
ing that extraction phase (about 2 minutes), we will ex-
plain how the process automatically builds the historical
schema.

3) We will finally use DAHLIA to exploit and visualize
the historical schemas of the 4 case studies (generated
beforehand, due to timing reasons) presented in Sec-
tion [V] We will study the schema evolution of those 4
case studies. We will make a time travel thanks to a
particular feature allowing us to successively display all
the schema versions of the studied project (Figure [7).
We will also show how DAHLIA enables to study
the differences between two selected schema versions
(Figure [8). We will then prove how the tool helps the
user to recover some implicit renamings, requiring user
inspection and validation. Figure [9] shows the list of Fig. 8. Example of schema-diff - 2 OSCAR schema versions (2011-08-03
implicit table renamings proposed by DAHLIA for the ~and 2013-06-27).

OSCAR project. In particular, one can see our tool
has detected that there is a potential renaming occurred

Visualization x I’RenamingnaectmwAnmmesm x ‘

at schema version 471: table specshis is renamed as = [Foramedtase Fomanng T o2
eyeformspecshistory and the underscore characters [aaa | [remoe. | [awplyine enaming. | fflﬁiiifleELﬁ"E“ =
appearing in the column names have been removed. speais R e messaelo ooy, 250
In conclusion, during the demonstration, we will demon- i vy e
strate how DAHLIA may help the user to answer several i b E:EEZ;E;C;%UK ;7
evolution questions such as how does the database - % ?ifﬁ(ﬁiiffﬁ g
schema evolve over time? which is the general evolution ey i e
trend? which are the most stable tables? who are the i Ta
most qualified developers for achieving a given schema - ;m
evolution phase?. st s
Tool availability: DAHLIA is available for download -1 1)
at http://info.fundp.ac.be/~Imeurice/DAHLIA. Installation and i e

usage instructions are provided at the same address.
Fig. 9. The implicit table renamings automatically detected by DAHLIA.

http://info.fundp.ac.be/~lmeurice/DAHLIA

	Introduction
	Related Work
	Approach
	Dahlia: A Visual Analyzer of Database Schema Evolution
	Filtering and Comparison
	History Analysis
	Statistics Extraction
	Support for Implicit Renaming Detection

	Dahlia Applied to Real-Life Case Studies
	Conclusion
	References

