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ABSTRACT

Nowadays, information systems represent crucial assets in most enterprises, since
they support the majority of their business activities. Those systems are usually
large software systems that manipulate a large amount of data, hence the name
data-intensive software system (DISS). A DISS is generally composed of a collection
of application programs which intensively interact with a database. The goal of
the database is to collect all the relevant data about the application domain of the
system.

A DISS is subject to continuous modification due to changes in the environ-
ment in which it operates. DISS evolution is an indispensable process to keep
systems adapted to ever-changing business needs and technological platforms.
During this process, any change in the business requirements necessitates the syn-
chronized adaptation of the database and the programs. However, database and
program source code are generally barely documented which makes evolution a
time-consuming and risky process.

The communication between the programs and the database can be complex;
many systems use dynamic SQL queries, according to which the SQL statements are
built at runtime and sent to the database server through specific APIs. Moreover,
increasingly popular object-relational mapping technologies allow programmers
to communicate with the database by manipulating program objects, instead of
writing SQL queries. This dynamicity makes difficult the process of evolution. In ad-
dition, heterogeneous systems, i.e., using several technologies to access its database,
further complicate the maintenance task and require programmers to master several
technologies. Therefore, DISS evolution clearly calls for automated support.

The main goal of this thesis is to invent and evaluate novel and efficient au-
tomated methods to support the evolution of dynamic and heterogeneous DISS.
More particularly, the thesis aims at proposing methodologies, techniques and tools
for (a) analyzing and understanding how the database and the application source
code have (co-)evolved over time, in order to facilitate future developments; (b)
supporting the adaptation of the application source code under database change.
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INTRODUCTION

Data-Intensive Software Systems

Nowadays, information systems represent important and crucial assets in most
enterprises and organizations, since they often support the majority of their business
activities, i.e., sale, production and management. Those systems are usually large
software systems that manipulate a large amount of data, hence the name data-
intensive software system (DISS). A DISS is generally composed of a software system
and a database that must co-exist. The software system is composed of a collection
of application programs which intensively interact with the database. The business
data are stored in the database. Database experts perceive the database as the
system’s central component, around which the application programs are built. The
database is possibly shared by many programs that simultaneously read, create,
update and delete the stored data.

The Database Component

The goal of the database is to collect all the relevant data about the application do-
main of the system. During the database design process, several database schemas
are produced. A database schema represents a model, i.e., an abstract formal rep-
resentation of a given application domain. There exist different types of database
schemas, belonging to different levels of abstraction. The first schema produced
during the process, i.e., the conceptual schema, is the most abstract: it identifies and
describes the domain entities, their properties and their associations in a platform-
independent way. The last schema, i.e., the physical schema, is the most concrete
schema and exactly specifies the actual database structures (collections, fields, con-
straints, ...) in a platform-specific way. The physical schema is then coded in the
Data Description Language (DDL) of the database management system (DBMS).

Data-Intensive Software System Evolution

DISS are subject to continuous modification due to changes in the environment in
which they operate. DISS evolution constitutes a complex process but is indispens-
able to keep systems adapted to ever-changing business needs and technological
platforms. Both the software and database engineering research communities have
addressed the problems of system evolution. Surprisingly, they have conducted
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very little research at the intersection of these two fields, where software meets data.
Any change in the business requirements necessitates the synchronized adaptation
of several components, such as the database schema, the database contents and
the programs that interact with the database. Database schemas and application
source code are supposed to be fully documented in order to make maintenance and
evolution easier. Unfortunately, developers seldom have time to write and maintain
a precise, complete and up to date documentation.

Due to this lack of documentation, this synchronized adaptation between the
three components (database schema, stored data and application source code) is a
complex, time-consuming and risky process. Indeed, in case of database schema
change, programmers have to adapt the outdated queries - that still manipulate the
older structures - to fit with the updated schema. If they do not properly handle those
outdated queries, it can lead to program errors/crashes when the application will
try to query non-existing structures at runtime. To illustrate the complexity of this
adaptation process, Qiu et al. [Qiu et al., 2013] conducted an empirical analysis of the
co-evolution of database schemas and code in ten popular large open-source data-
intensive systems; their study revealed that, for each database revision containing
2-5 atomic schema changes, around 100 - 1,000 lines of code were changed by
developers, which represents quite significant changes.

The Complexity of Data-Intensive Software Systems

The architecture of DISS is typically complex; the database schema can define hun-
dreds/thousands of collections and fields and the implemented database can store
millions of records, that can represent terabytes/petabytes of data (as illustration,
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Facebook data warehouse stores hundreds of petabytes1). Those data are shared and
manipulated by different application programs through a given data manipulation
language (DML), e.g., SQL language, COBOL DML, DL/I.

The application programs are written in their programming languages and can
represent millions of lines of code. The communication between the programs
and the database can be complex as well; many systems use dynamic SQL queries,
according to which the SQL statements are built at runtime and sent to the database
server through specific APIs. Moreover, increasingly popular object-relational map-
ping (ORM) technologies allow programmers to communicate with the database by
manipulating program objects - instead of writing SQL queries - without having to
know how those objects relate to their data sources.

Adapting the application source code to any database schema change neces-
sitates to (1) precisely spot the code locations to modify (i.e., accessing the older
database structures) and (2) understand how to adapt those locations to the new
structures. Therefore, since database accesses are increasingly dynamic and popu-
lar technologies like ORMs allow programmers to use an external object-oriented
schema of the database to access it (thus, both physical and ORM schemas should
evolve synchronously over time), the process of program-database co-evolution
becomes complex, time-consuming and error-prone. In addition, heterogeneous
systems, i.e., using several technologies to access its database, further complicate
the maintenance task and require programmers to master several technologies.

Goal of the Dissertation

The main goal of this dissertation is to devise and evaluate novel and efficient
automated methods to support the evolution of dynamic and heterogeneous DISS.
More particularly, the dissertation aims at proposing methodologies, techniques
and tools for :

(a) analyzing and understanding how the database schema and the application
source code have (co-)evolved over time, in order to facilitate future develop-
ments.

(b) supporting the adaptation of the application source code under database
schema evolution.

We formulate our thesis as:

Analyzing the evolution history of dynamic and heterogeneous data-
intensive software systems and extracting database accesses from source
code, are useful to support their evolution.

1http://bit.ly/1hyvJDn
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Research Questions

This thesis research is driven by the following research questions (RQ):

sRQ1: How can history analysis of a DISS support the actual maintenance of
the system?

sRQ2: How to automatically analyze and extract the communication between
application programs and the database in a dynamic DISS?

sRQ3: To what extent can we support program-database co-evolution in dy-
namic and heterogeneous DISS?

4
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Dissertation Outline

The remainder of this dissertation is composed of 8 chapters, as depicted below.

Chapter 2 
State of The Art 

Chapter 3 
Understanding Database 

Schema Evolution  

Chapter 1 
Conceptual Background 

Chapter 4 
Static Analysis of Dynamic 

Database Usage in Java Systems  

Chapter 5 
Analyzing the Evolution of 
Database Usage in Data-

Intensive Software Systems 

Chapter 6 
Detecting and Preventing 

Program Inconsistencies under 
Database Schema Evolution 

Chapter 7 
Visual Analysis of Database 

Usage in Dynamic and 
Heterogeneous Systems 

Chapter 8 
Other Applications 

Conclusion and 
Future Directions 

General structure of the dissertation.
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Chapter 1 provides a brief introduction to the main basic concepts used in the thesis.

Chapter 2 presents the state-of-the-art in the field of data-intensive software sys-
tem evolution and outlines some gaps in the literature. It finally recapitulates the
problems we are addressing in this thesis.

Chapter 3 explores the use of the database schema evolution history as an additional
information source to aid database reverse engineering. It presents a tool-supported
method for analyzing the evolution history of legacy databases, and reports on a
large scale case study of reverse engineering a complex information system.

Chapter 4 presents an analysis approach that aims to statically detect database
accesses within the source and to recover their actual SQL values. This automatic
approach, specifically designed for Java systems, targets at three main database ac-
cess technologies, i.e., JDBC, Hibernate and JPA. It secondly evaluates this approach
on three real-life systems.

Chapter 5 builds on the static analysis approach presented in Chapter 4. It presents
a historical analysis approach that allows us to analyze, at a fine-grained level, how
the program source code and the database schema have co-evolved over time. It
then motivates the benefits of this historical approach on real-life systems.

Chapter 6 presents a tool-supported approach that allows developers to simulate
a database schema change and automatically determine the set of source code lo-
cations that would be impacted by this change. Developers are then provided with
recommendations about what they should modify at those source code locations
in order to avoid inconsistencies. Based on the historical analysis presented in
Chapter 5, this chapter proposes an approach that has been specifically designed
to deal with Java systems that use dynamic data access frameworks such as JDBC,
Hibernate and JPA. It finally motivates and evaluates the proposed approach, on
three real-life systems of different size and nature.

Chapter 7 presents DAHLIA 2.0, a visualization tool that allows developers to ana-
lyze the database usage in dynamic and heterogeneous systems by visualizing the
interactions between the application program and the database. It then applies
DAHLIA 2.0 to real-life systems and illustrates the benefits of this visualization. Fi-
nally, it presents a controlled experiment for the empirical evaluation of DAHLIA 2.0.
The objective of this experiment is to assess the suitability of our approach in the
context of program-database co-evolution.

Chapter 8 presents three different applications of the approaches presented in Chap-
ters 3 and 4, namely (1) concept location for DISS, (2) database reverse engineering
and (3) database schema evolution in schema-less NoSQL data stores.
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This chapter provides the reader with a conceptual background, by introducing the
main concepts that we will use in this thesis: database engineering, database reverse
engineering, program analysis, the object-relational mapping technologies and the
use of popular Java database access technologies.

1.1 Database Engineering

Database engineering is a process comprising a series of phases, such as database
design, implementation and maintenance. This process relies on (or let say, should
rely on) a disciplined approach divided into several phases. Figure 1.1 gives an
abstract representation of the database engineering process. During this process
different database schemas are produced. A database schema represents a model,
i.e., an abstract formal representation of a given application domain. Such a model
allows to better understand this application domain and to build an operational
database allowing to store and manipulate information about it. There exist different
types of database schemas, belonging to different levels of abstraction. The first
schema produced during the process is the most abstract (platform-independent)
while the last one is the most concrete (platform-specific) and exactly specifies the
actual database structures.
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Figure 1.1: Database engineering process.

Requirement analysis. The requirements analysis phase, also known as concep-
tual analysis, consists in collecting the user requirements about the application
domain under consideration. With this requirements collection, the database en-
gineer will produce the conceptual schema of the future database. A conceptual
schema extracts pertinent concepts of the domain of application from the user
requirements, which are typically expressed in natural language.

Logical design. The second phase, called logical design, consists in extracting the
logical schema of the future database from the conceptual schema obtained so
far. This logical schema describes more concretely the database structures, the
relationships between these structures and the integrity constraints. It complies
with a given logical model that is compatible with a given database paradigm.

Physical design. The physical design phase consists in designing a physical schema.
A physical schema is obtained by enriching the logical schema with technical con-
structs needed to make the future database efficient and robust (e.g., indexes and
physical dbspaces).

Coding phase. Finally the coding phase consists in translating the physical schema
into the executable database code. The generated code, also called data definition
language (DDL) code, will be compatible with the particular database management
system (DBMS) and will allow defining and creating the database structures.
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Figure 1.2: Database reverse engineering process.

1.2 Database Reverse Engineering

During its lifetime, a database is usually faced with evolution; the developers often
have to make changes to their database structures and constraints in order to adapt
the database to ever-changing needs. However, such changes are not always trivial
and can represent a complex task. Indeed, many existing (legacy) databases have
not been designed in a disciplined way and sometimes, no systematic database
engineering process was followed during the design phase. Therefore, it is common
to encounter databases that are poorly/not documented. Even worse, it is frequent
that the DDL code actually constitutes the only available documentation of the
database. The process of recovering missing database schemas, and in particular of
the conceptual schema, is called database reverse engineering. Database reverse
engineering (DRE) is globally considered as the extraction of conceptual schema
from several information sources [Hainaut, 2002]. This process is illustrated by
Figure 1.2. The database reverse engineering process is composed of three successive
steps.

Physical extraction. This phase aims to produce the physical schema from the
DDL code. The physical extraction produces a raw physical schema, that contains
all the explicit constructs expressed in the DDL code but does not include potentially
implicit database constructs like, for example, undeclared foreign keys.

Logical reconstruction. This phase aims to produce a refined logical schema from
the physical schema by analyzing additional artifacts. For instance, implicit schema
constructs can be recovered by analyzing information sources such as programs
source code and database contents.

11
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Conceptualization. This final step produces the database conceptual schema
from the refined logical schema.

1.3 Program Analysis

Program comprehension is a crucial process in software maintenance/evolution that
is necessary in order to sufficiently understand the program before its modification.
This activity has received the attention from the research community, particularly
over the last decade. Program understanding requires the analysis of such artefacts
as source code and documentation but it is not sufficient to get a complete view
of the program/system. Indeed, analyzing the program behaviour at runtime can
provide additional information pertaining to what the program is doing in specific
execution scenarios.

1.3.1 Static Analysis

A natural way to proceed in the program comprehension process is by means of
static program analysis techniques. This kind of analysis consists in analyzing
the source code of the program in order to extract static information and derive
program properties of interest. Then, by studying the extracted properties, one
can obtain a better understanding of the program. Static analysis provides a better
comprehension of the structure, the dependencies and the behaviour of the program
but without executing it. Several static analysis techniques exist such as:sControl-flow analysis [Allen, 1970]: the control-flow analysis is a static analysis

technique for determining the control flow of a program. The control flow is
expressed as a control flow graph, namely a graph representation of all paths
that might be visited through a program during its execution.sData-flow analysis [Kildall, 1973]: data-flow analysis is a static analysis tech-
nique designed to gather information about the values at each point of the
program and how they change over time. The control flow graph is used to
determine which particular value is assigned to a particular variable. More-
over, two categories of data-flow analysis emerge, i.e., the intraprocedural and
interprocedural data-flow analyses.

a) Intraprocedural analysis: the intraprocedural data-flow analysis operates
on a control-flow graph for a single method.

b) Interprocedural analysis: the interprocedural analysis uses calling re-
lationships among procedures. It analyzes the effects of (1) procedure
calls in the caller procedures, and (2) calling contexts in the callee pro-
cedures. The analysis can be performed by exploiting the program call
graph, i.e, a control flow graph which represents calling relationships
between procedures; each node represents a procedure and each edge
( f , g ) indicates that procedure f calls procedure g .sModel checking [Emerson and Clarke, 1980; Queille and Sifakis, 1982]: model

checking refers to the problem to automatically check if a given model com-
plies with the given specification. The idea is to determine if a correctness
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property is verified by exhaustively exploring the reachable states of a pro-
gram. If the property does not hold, the model checking algorithm generates
an execution trace leading to a state in which the property is violated.sSymbolic execution [King, 1976]: symbolic execution is a static analysis tech-
nique to determine what inputs cause each part of a program to execute. An
interpreter follows the program, assuming symbolic values for inputs instead
of actual inputs coming from a normal program execution.sStatic program slicing [Weiser, 1981]: program slicing is the computation of
the set of programs statements, the program slice, that may affect the values at
some point of interest, referred to as a slicing criterion. As illustration: given a
program P and a slicing criterion C = (i ,V ) where i is a statement in program
P and V is a subset of variables in P , a static program slice consists of all
statements in program P that may affect variable v for a set of all possible
inputs at the statement i .

1.3.2 Dynamic Analysis

In contrast, dynamic program analysis techniques focus on information generated at
runtime. This second category of program analysis techniques consists in analyzing
the properties of the running program, i.e., at execution time. Dynamic analysis
allows mining a precise (but partial) picture of the program during its execution. On
the one hand it can be more accurate than static program analysis, but on the other
hand, it is obviously restricted to some execution paths of the program.

In summary, dynamic program analysis typically aims to analyze information
built at runtime while static analysis handles information extracted from source code.
However, one can notice that both techniques are complementary for achieving a
complete program understanding process.

1.4 Object-Relational Mapping

Object-relational mapping (ORM) is a programming technique used to connect
object code to a relational database. Object code is written in object-oriented
(OO) programming languages. ORM converts data between type systems that are
unable to coexist within relational databases and OO programming languages. ORM
offers mechanisms to define mappings between database objects (e.g., tables and
columns) and source code objects (e.g., classes and fields/attributes). It thus allows
developers to manipulate source code objects without having to consider how those
objects relate to their data sources. In addition, ORM generally uses a SQL database
driver to translate those manipulations into corresponding SQL accesses. Figure 1.3
represents a database architecture in presence of an ORM.

ORM mainly serves to tackle the so-called object-relational impedance mis-
match. The object-relational impedance mismatch [JBOSS Hibernate, 2017] is a
set of conceptual and technical difficulties that are often encountered when a rela-
tional DBMS is being served by an application program written in an object-oriented
programming language (e.g., inheritance, aggregation, polymorphism, ...).
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Figure 1.3: Database architecture in presence of an ORM.

1.5 Java and its Database Access Technologies

To facilitate the data management and manipulation in DISS, a large variety of
database access technologies are proposed and used, especially for systems devel-
oped in popular languages such as Java. Whereas Java is the most popular program-
ming language today [TIOBE Programming Community Index, 2017], Goeminne
et al. [Goeminne and Mens, 2015] carried out a large-scale empirical study and
revealed that three particular Java database access technologies were emerging, i.e.,
JDBC, Hibernate and JPA. Below we briefly introduce JDBC, Hibernate and JPA, by
illustrating their underlying database access mechanisms.

1.5.1 JDBC

The JDBC API is the industry standard for database-independent connectivity be-
tween the Java programming language and relational databases. It provides a
call-level API for SQL-based database access, and offers the developer a set of
methods for querying the database, for instance, methods from Statement and
PreparedStatement classes (see Listing 1.1).

1.5.2 Hibernate

Hibernate is an ORM library for Java, providing a framework for mapping an object-
oriented domain model to a traditional relational database. Its primary feature is
to map Java classes to database tables (and Java data types to SQL data types). The
mapping is usually defined by use of Hibernate configuration files (i.e., .hbm.xml).
Listing 1.2 shows an example of Hibernate mapping defined between the customer
table and the Customer class.

Hibernate provides also a SQL-inspired language called Hibernate Query Lan-
guage (HQL) which allows to write SQL-like queries using the mappings defined
before. Listing 1.3 provides an example of a HQL query execution (line 13). In
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1 public class ProviderMgr {
2 private Statement st;
3 private ResultSet rs;
4 private boolean ordering;
5

6 public void executeQuery(String x, String y) {
7 String sql = getQueryStr(x);
8 if(ordering)
9 sql += " order by " + y;

10 rs = st.executeQuery(sql);
11 }
12 public String getQueryStr(String str) {
13 return "select * from " + str;
14 }
15 public Provider[] getAllProviders() {
16 String tableName = "Provider";
17 String columnName = (...) ? "provider_id" : "provider_name";
18 executeQuery(tableName, columnName);
19 ...
20 }
21 }

Listing 1.1: Java code fragment using the JDBC API to execute a SQL query (line 10).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <hibernate-mapping>
3 <class name="Customer" table="customer">
4 <id name="customer_id" column="id" type="integer" />
5 <property name="name" column = "name" not-null="false" type="string" length="255" />
6 <property name="city" column="city" not-null="false" type="string" length="255" />
7 ...
8 </class>
9 </hibernate-mapping>

Listing 1.2: Example of mapping defined in a Hibernate configuration file. The
customer table and its columns are mapped to the Customer class and its attributes.

addition, Criteria Queries are provided as an object-oriented alternative to HQL,
where one can construct a query by simple method invocations. See Listing 1.4 for a
sample usage of a Criteria Query. Hibernate also provides a way to perform CRUD
operations (Create, Read, Update, and Delete) on the instances of the mapped entity
classes. Listing 1.5 illustrates a sample record insertion in the database.

1.5.3 Java Persistence API

JPA is a Java API specification to describe the management of relational data in
applications. Just like Hibernate, JPA also provides a higher level of abstraction based
on the mapping between Java classes and database tables permitting operations on
objects, attributes and relationships instead of tables and columns. JPA uses Java
annotations to establish this mapping. Listing 1.6 illustrates an example of mapping
between the customer table and the Customer class by use of JPA annotations.

JPA offers developers several ways to access the database. One of them is the Java
Persistence Query Language (JPQL), a platform-independent object-oriented query
language which is defined as part of the JPA API specification. JPQL is used to make
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1 public class ProductDaoImpl implements ProductDao {
2

3 private SessionFactory sessionFactory;
4

5 public void setSessionFactory(SessionFactort sessionFactory) {
6 this.sessionFactory = sessionFactory;
7 }
8

9 public Collection loadProductsByCategory(String category) {
10 return this.sessionFactory.getCurrentSession()
11 .createQuery("from Product product where category=?")
12 .setParameter(0, category);
13 .list();
14 }
15 }

Listing 1.3: Java code executing a HQL query (line 13). Product selection according
to its category.

1 private Session session;
2 ...
3 List cats = session.createCriteria(Customer.class)
4 .add(Restrictions.eq("name", "Smith"))
5 .add(Restrictions.in("city", new String[] {"New York", "Houston", "Washington DC"}))
6 .list();

Listing 1.4: Java code executing a Criteria query. Customer selection restricted on
the name and city.

1 private Session session;
2 ...
3 public void saveCustomer(Customer myCustomer) {
4 saveObject(myCustomer);
5 }
6

7 public void saveObject(Object o) {
8 session.save(o);
9 }

Listing 1.5: Hibernate operation on a mapped entity class instance. Insertion of a
new customer.
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1 @Entity
2 @Table(name = "customer")
3 public class Customer{
4 @Id
5 @Column(name = "customer_id")
6 protected int id;
7

8 @Column(name = "name")
9 protected String name;

10

11 @Column(name = "city")
12 protected String city;
13

14 ...
15 }

Listing 1.6: Example of mapping defined by use of JPA annotations. The customer
table and its columns are mapped to the Customer class and its attributes.

1 EntityManagerFactory emf = ...;
2 EntityManager em = emf.createEntityManager();
3 Order order = ...;
4 Integer cust_id = order.getCustomerId();
5 Customer cust = (Customer) em.createQuery("SELECT c FROM Customer c WHERE c.cust_id=:

cust_id")
6 .setParameter("cust_id", cust_id).getSingleResult();

Listing 1.7: Sample JPQL query. Customer selection according to a given id.

1 EntityManagerFactory emf = ...;
2 EntityManager em = emf.createEntityManager();
3 em.getTransaction().begin();
4 Order order = ...;
5 em.persist(order);
6 em.getTransaction().commit();
7 em.close();

Listing 1.8: JPA operation on a mapped entity class instance. Creation and insertion
of a new order (line 5).

queries against entities stored in a relational database. Like HQL, it is inspired by
SQL, but it operates on JPA entity objects rather than on database tables. Listing 1.7
shows an example of JPQL query execution. JPA also provides a way to perform
CRUD operations on the instances of mapped entity classes. For instance, Listing 1.8
illustrates the creation and insertion of a new order in the database.

1.5.4 Dynamically generated Queries

Nowadays, data-intensive applications tend to access their underlying database in
an increasingly dynamic way. The queries that they send to the database server are
usually generated at runtime, through String concatenations. In Listing 1.1, the value
of the SQL query executed at line 10 depends on the path followed by the program
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at runtime. The SQL query value is stored in variable sql ; sql is initialized at line 7
but its value can change according to the followed program path. For instance, its
value will be updated if the program passes through the boolean condition at line 8.
Moreover, line 9 utilizes y , an input parameter of the method, to update the value of
sql .

Furthermore, we observe that SQL queries are not always written in the programs,
but generated in the background. That is the case when the application accesses its
database by use of an ORM framework (e.g., Hibernate or JPA). As illustration, line 4
of Listing 1.5 saves a new customer in the database. In this example, no SQL queries
are written in the source code; however, the program will send the corresponding
SQL access to the database server at runtime - i.e., a SQL query on the following form:
INSERT INTO customer(customer_id, name, city, ...) VALUES(...).

Roadmap

This chapter has briefly presented the conceptual background of the thesis. In the
next chapter (Chapter 2), we summarize the state-of-the-art in the field of data-
intensive software system evolution and outline some gaps in the literature.
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In this chapter, we introduce the historical context of software engineering, software
evolution and more particularly, data-intensive software system evolution. We present
the state-of-the-art in this field and outline some gaps in the literature. We finally
recapitulate the problems we are addressing in this thesis.

2.1 Software Engineering: the Origins

The origins of the term "Software Engineering" were used for the very first time in
1968 as a title for the NATO conference on Software Engineering [Naur and Ran-
dell, 1969]. This international conference was attended by experts, from different
countries, all coming from professional domains concerned with software. This
conference was organized in a period of crisis in the software development industry
(poor quality of software, projects exceeding time and budget, ...). The main goal of
this conference was to define best practices in order to obtain reliable, efficient and
economically viable software.

In 1970, Royce described his personal views about managing large software
developments [Royce, 1987]. Based on his experience, he realized that there were two
essential steps common to all computer program developments, regardless of size or
complexity, namely the analysis step followed by the coding step. For small software
development projects these two steps were sufficient, but not for the development
of larger software systems. These require many additional steps back and forth,
which give development an iterative nature. As consequence, Royce defined the

19



CHAPTER 2. STATE OF THE ART

well-known waterfall life-cycle process for software development. In this model, the
maintenance phase is the final phase of the life-cycle of a software system, after its
deployment. A common perception of maintenance is that it merely involves bug
fixes and minor adjustments to the software. Later, software maintenance became a
part of the IEEE Standard for Software Maintenance [IEEE, 1999] and was defined as
"the modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a changed environment".

2.2 Software Evolution: Towards a new Research Area

In the seventies, Lehman demonstrated that systems continue to evolve over time.
He observed that, when evolving, the systems grow more complex. His research
led to his famous laws of software evolution [Lehman, 1980, 1984, 1996; Lehman
et al., 1997]. This was probably the first time that the term "software evolution"
was evoked. Lehman emphasized the difference between software evolution and
the after deployment side of software maintenance. Research on software evolution
has become popular due to those laws. This has inspired many researchers to
validate/revisit these laws on open source software systems [Godfrey and Tu, 2000;
Fernández-Ramil et al., 2008; Wermelinger et al., 2011; Skoulis et al., 2014].

Nowadays, software evolution has become a very popular and active research
area in software engineering, and the terms software evolution and software mainte-
nance are often used as synonyms. The international ISO/IEC 14764 standard for
software maintenance [International Standards Organisation (ISO), 1999], stresses
the importance of pre-delivery activities as well as the post-delivery activities of
maintenance. Four categories of software maintenance are catalogued:

(a) Corrective maintenance: identifying and fixing errors present in a software
product. It consists in correcting discovered problems.

(b) Adaptive maintenance: modifying the software in order to satisfy a changing
environment.

(c) Perfective maintenance: modifying the software product to satisfy new user
requirements.

(d) Preventive maintenance: modifying the software product to increase maintain-
ability and reliability. This category of maintenance aims to prevent eventual
problems in the future.

Nowadays, one considers that software maintenance represents on average
about 60 percent of the entire software development costs and it is therefore the
most costly phase of the software life cycle [Glass, 2001].

Many renowned researchers have contributed to this research domain, work-
ing on a wide variety of topics such as test and production code [Zaidman et al.,
2011], code cloning [Göde and Koschke, 2011], bug prediction [Guo et al., 2010;
D’Ambros et al., 2012], build systems [McIntosh et al., 2012], change-proneness and
fault-proneness [Khomh et al., 2012], and many more. Another emerging trend in
contemporary empirical research is the focus on the social aspects, focusing on the
people that are involved in the software development process as opposed to the
software artefacts themselves [Nakakoji et al., 2002; Weiss et al., 2006; Ye et al., 2005;
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Robles et al., 2009; Devanbu et al., 2009; Antwerp and Madey, 2010; Canfora et al.,
2011]. With respect to measuring the quality of software [Chidamber and Kemerer,
1994], especially in the context of software evolution, many research advances were
performed [Lanza et al., 2005; Pfleeger, 2008; Darcy et al., 2010; Vasilescu et al., 2011;
Mordal-Manet et al., 2013].

2.3 Data-Intensive Software System Evolution

In a continuously evolving environment, system evolution is a complex task. This
process is even more complicated in the case of data-intensive software systems.
Indeed, those systems tend to access their underlying database in an increasingly
dynamic way; maintaining the executed queries is a complicated task since they are
usually constructed and generated at runtime by the program. Moreover, popular
access technologies like ORMs are emerging; since programmers use an external
object-oriented schema of the database, they have to synchronously evolve the
object-oriented schema and the database schema.

Both the software and database engineering research communities have ad-
dressed the problem of system evolution. However, very little research has been
conducted at the junction of these two fields.

2.3.1 Database Reverse Engineering

Data-intensive software system evolution often relies on the availability of up-to-
date database documentation. However, in practice, the documentation may be
incomplete, obsolete or simply missing. As illustration, the conceptual, logical and
physical database schemas are often needed to ensure the evolution task. However,
sometimes the DDL code constitutes the only available database documentation.
Furthermore, this code is often incomplete since some data structures and con-
straints cannot be expressed in DDL. Therefore, the process of recovering those
implicit properties may prove indispensable but requires additional effort.

Several research works have been conducted on that field and the proposed
database understanding techniques exploit different information sources.

(a) Database schema analysis [Navathe and Awong, 1988; Markowitz and Makowsky,
1990; Premerlani and Blaha, 1994]. Analyzing the database schema structures
may help identify hidden constructs such as relationships and hierarchies
between data.

(b) Data analysis [Chiang et al., 1994; Lopes et al., 2002; Yao and Hamilton, 2008;
Pannurat et al., 2010]. Mining the database contents can be used in two ways.
Firstly, to discover implicit properties, such as functional dependencies and
foreign keys. Secondly, to check hypothetic constructs that have been sug-
gested by other means.
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(c) Graphical User Interface (GUI) analysis [Terwilliger et al., 2006; Ramdoyal
et al., 2010]. Forms, reports and dialog boxes are user-oriented views on the
database that exhibit spatial structures, meaningful names, explicit usage
guidelines and, at runtime, data population and error messages that can pro-
vide information on data structures and constraints.

(d) Static program analysis [Petit et al., 1994; Di Lucca et al., 2000; Cleve et al.,
2006]. Analysis, such as data-flow graph exploration, can bring valuable in-
formation on field structure and meaningful names. More sophisticated tech-
niques such as program slicing can be used to identify complex constraint
checking.

(e) Dynamic program analysis [Grosso et al., 2007; Cleve and Hainaut, 2008; Alalfi
et al., 2009; Cleve et al., 2012]. In the case of highly dynamic program-database
interactions, the database queries may only exist at runtime. Hence recent
techniques allow to capture and analyze SQL execution traces in order to
retrieve structural information.

It is important to note that none of those sources of information is sufficient, yet they
can all contribute to a better knowledge of the hidden components and properties
of a database schema.

2.3.2 Database Schema Evolution Analysis

It has been already shown that analyzing the system evolution history can provide
valuable data for history-based recommenders. For instance, Ying et al. [Ying et al.,
2004] and Zimmermann et al. [Zimmermann et al., 2005] have independently devel-
oped different approaches that use association rule mining on CVS data to recom-
mend source code that is potentially relevant to a given fragment of source code.

Moreover, Rahm et al. [Rahm and Bernstein, 2006] discussed the growing interest
of schema evolution in recent research works; the authors built an online bibliogra-
phy aiming to provide a comprehensive and up-to-date collection of publications
on schema evolution. They categorized publications along multiple hierarchical
dimensions; they did not limit themselves to database schema evolution but they
also considered related fields such as ontology evolution, software evolution and
workflow evolution.

Sjøberg [Sjøberg, 1993] showed, already in 1993, potential uses of the database
schema evolution history. He studied the schema evolution history of a large-scale
medical application and showed, by using a thesaurus tool, that even a small change
to the schema may have major consequences for the rest of the application code.
The study reveals that schema changes are significant both in the development
period and after the system has become operational. The consequences of the
schema changes on the application programs have been measured. In particular,
the tool provides information about how many screens, actions, queries, etc. may be
affected by a possible schema change. The results confirm that change management
tools are needed.
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Curino et al. [Curino et al., 2008] present a study of the structural evolution of
the Wikipedia database, with the aim to extract both a micro-classification and a
macro-classification of schema changes. They also study the frequency distribution
of those schema changes. The authors propose, in addition to a schema evolution
statistics extractor, a tool that operates on the differences between subsequent
schema versions and semi-automatically extracts the set of possible schema changes
that have been applied. In this study, a period of four years has been considered,
corresponding to 171 successive versions of the Wikipedia database schema. The
latter is rather limited in size: it includes from 17 to 34 tables depending on the
schema version considered. The total number of columns in the schema does not
exceed 250, whatever the version. Their study shows an urgent needs for better
automation and documentation tools for supporting graceful schema evolution.

Vassiliadis et al. [Vassiliadis et al., 2015, 2017] studied the evolution of individual
database tables over time in eight different software systems. They report on their
observations on how evolution-related properties, like the possibility of deletion,
or the amount of updates that a table undergoes, are related to observable table
properties like the number of attributes or the time of birth of a table.
Through a large-scale study on the evolution of database, they also tried to determine
whether Lehman’s laws of software evolution hold for evolving database schemas as
well [Skoulis et al., 2014]. They conclude that the essence of Lehman’s laws remains
valid in this context, but that specific mechanics significantly differ when it comes
to schema evolution.

Finally, recent approaches and studies have focused on the evolution of NoSQL
databases. In [Scherzinger et al., 2015], the authors present ControVol, a frame-
work controlling schema evolution in NoSQL applications. ControVol statically
type checks object mapper class declarations against earlier versions in the code
repository. ControVol is capable of warning developers of risky cases of mismatched
data and schema. ControVol also suggests and performs automatic fixes to resolve
possible schema migration problems.
Scherzinger et al. [Scherzinger et al., 2013] present a model checking approach to
reveal scalability bottlenecks in NoSQL schemas.
Ringlstetter et al. [Ringlstetter et al., 2016] analyzed how developers evolve NoSQL
document stores by means of evolution annotations. They discovered that evolution
annotations are actually used; however, developers do not employ them for evolving
the data model but for other tasks.

Discussion

While little research has focused on database schema evolution, we observe the
interest of several authors for this field. Table 2.1 presents a brief summary of this
related research. The first column contains the related work references. The second
and third columns show the importance of the studied system(s) in terms of, respec-
tively, database schema size and time period of analysis. In case of multiple studied
systems, we retain the most important figures. The fourth column categorizes the
presented approach; either an approach intended for comprehending the evolution
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WORK DB SIZE PERIOD APPROACH GOAL

[SJØBERG,
1993]

666
fields

1 year single-
system

measuring modifications to
database schemata and their
consequences

[CURINO

ET AL., 2008]
34

tables,
242

fields

4.5
years

single-
system

extracting both a micro-
classification and a macro-
classification of schema
changes

[VASSILIADIS

ET AL., 2015]
≤858
fields,
≤114
tables

≤13
years

empirical studying the evolution of indi-
vidual database tables

[SCHERZINGER

ET AL., 2015]
13 fields 2

years
single-
system

framework controlling schema
evolution in NoSQL applica-
tions using object mappers

[RINGLSTETTER

ET AL., 2016]
- - empirical analyzing how developers

evolve NoSQL document
stores by means of evolution
annotations

Table 2.1: Summary of research works focusing on database schema evolution.

of a particular system (i.e., single-system approach), or an empirical study aiming
at detecting general evolution trends and phenomenons. Finally, the fifth column
briefly reminds the main objective of each work.

Some interesting observations can be made after analyzing the related work.

sFewer studies propose to analyze the evolution history of database schemas to
facilitate the future developments. Instead, the presented approaches gener-
ally target at the history analysis of one or multiple systems with the objective
to detect general evolution trends.

sThe presented works generally define and use their approach on small or
medium database schemas (in terms of tables and columns) and periods.

sNone of the presented approaches focus on analyzing database schema evo-
lution in order to provide developers with recommendations about what to
change in case of schema modifications and who the most appropriate person
is for achieving a particular database-related activity.
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2.3.3 Database Usage Analysis

Several researchers have tried to identify, extract and analyze database usage in
application programs. The purpose of these approaches ranges from error check-
ing [Christensen et al., 2003; Gould et al., 2004; Wassermann et al., 2007], SQL
injection vulnerability detection [Wei et al., 2006; Fu et al., 2007], SQL fault localiza-
tion [Clark et al., 2011], fault diagnosis [Javid and Embury, 2012] to impact analysis
for database schema changes [Maule et al., 2008; Wang et al., 2010].

A pioneer work was published by Christensen et al. [Christensen et al., 2003], who
propose a static string analysis technique that translates a given Java program into a
flow graph, and then analyzes the flow graph to generate a finite-state automaton.
They present several applications of this analysis, such as statically checking the
syntax of dynamically generated expressions, such as SQL queries. They evaluate
their approach on Java classes with at most 4 kLOC.

Gould et al. propose a static analysis technique close to a pointer analysis, based
on an interprocedural data-flow analysis to verify the correctness of dynamically
generated query strings [Gould et al., 2004; Wassermann et al., 2007]. They also
detail a prototype tool based on the algorithm and present several illustrative defects
found in small size subject systems.

Wei et al. propose a technique to defend against the SQL injection attacks
targeted at stored procedures. Their technique combines static analysis with runtime
validation to eliminate the occurrence of such attacks. The static part consists of
a stored procedure parser which detects and analyzes SQL statements potentially
vulnerable to SQL injection attacks [Wei et al., 2006].

Fu et al. present SAFELI, a static analysis framework, designed for identifying SQL
injection attack vulnerabilities at compile time. SAFELI statically inspects bytecode,
using a symbolic execution, and finds out user inputs that could lead to security
breaches [Fu et al., 2007].

Clark et al. presents a database-aware fault localization technique. Their tech-
nique uses SQL commands executed by the test suite to compute sets of statement-
SQL and statement-attribute tuples. The technique computes suspiciousness scores
for the statement-SQL tuples, statement-attribute tuples, and statements, then let
the developer identify the database commands and program statements likely to
cause failures [Clark et al., 2011].

Javid et al. focus on diagnosing failed test cases caused by embedded queries
in database applications which are syntactically correct but semantically incorrect
(i.e., they produce incomplete or incorrect results). They surveyed the literature and
performed an experiment to evaluate the efficiency of existing techniques for this
problem. They found that the existing techniques only provide a partial solution to
this problem [Javid and Embury, 2012].

van den Brink et al. present a quality assessment approach for SQL statements
embedded in PL/SQL, COBOL and Visual Basic code [Brink et al., 2007]. The initial
phase of their method consists in extracting the SQL statements from the source
code using control and data-flow analysis techniques. They evaluate their method
on COBOL programs with at most 4 kLOC.
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Ngo and Tan [Ngo and Tan, 2008] make use of symbolic execution to extract
database interaction points from web applications. Through a case study of PHP
applications with sizes ranging 2 – 584 kLOC, they show that their method is able to
extract about 80% of such interactions.

More recently, Linares-Vasquez et al. [Linares-Vasquez et al., 2015] studied how
developers document database usage in source code. Their results show that a large
proportion of database-accessing methods is completely undocumented.
Later [Linares-Vásquez et al., 2016], they presented their tool approach, namely
DBScribe, which aims at automatically generating always up-to-date natural lan-
guage descriptions of database operations and schema constraints in source code
methods. DBScribe statically analyzes the code and database schema to detect
database usages and then propagates these usages and schema constraints through
the call-chains implementing database-related features. Although DBScribe’s im-
plementation covers SQL-statements invoked by means of JDBC and Hibernate API
calls, they do not manage Hibernate query language (HQL) and do not perform
interprocedural analysis when resolving SQL-statements.

Chen et al. [Chen et al., 2014] propose an automated framework for detecting,
flagging and prioritizing database-related performance anti-patterns in applications
that use object-relational mapping. In this context, the authors identify database-
accessing code paths through control-flow and data-flow analysis, but they do not
reconstruct statically the SQL queries that correspond to the identified ORM code
fragments. Instead, they execute the applications and rely on log4jdbc to log the SQL
queries that are executed. Their analysis revealed that the modifications made after
analysis caused an important improvement of the studied systems’ response time.
Later, the authors provide an experience report on (1) finding framework-specific
database access bug patterns, (2) implementing a bug detection tool, and (3) inte-
grating the tool into daily practice [Chen et al., 2016]. They discuss five database
access bug patterns that they observed in large-scale industrial systems. Especially,
they focus on bug patterns when using some frameworks/ORMs like Spring and
Hibernate. Their objective is to help researchers create static bug detection tools
which can be adopted in practice.

In [Goeminne and Mens, 2015], the authors carried out a coarse-grained histori-
cal analysis of the usage of Java relational database technologies (primarily JDBC,
Hibernate, Spring, JPA and Vaadin) on several thousands of open source Java projects
extracted from a GitHub corpus consisting of over 13K active projects [Allamanis
and Sutton, 2013]. Using the statistical technique of survival analysis, they explored
the survival of the database technologies in the considered projects. In particular,
they analyzed whether certain technologies co-occur frequently, and whether some
technologies get replaced over time by others. They observed that some combina-
tions of database technologies appeared to complement and reinforce one another.
They did not observe any evidence of technologies disappearing at the expense of
others.
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Discussion

Table 2.2 summarizes the main research related to database usage analysis. The first
column contains the related work references. The second column categorizes the
type of conducted database usage analysis. The third column indicates, in case of
static analysis, if the approach proposes interprocedural analysis (i.e., which resolves
values that are returned by interprocedural calls or values passed as arguments to
the analyzed method/function). The fourth column indicates the targeted kind of
database interactions. Finally, the fifth column reminds the main objective of each
work.

Here again, some interesting observations can be made.

sVery few works propose automatic support for automatically detecting, ex-
tracting and accurately reconstructing the database usage of large systems.
Most of the approaches only offer partial/time-consuming reconstructions of
SQL statements manipulated within the source code.

sWhile only little research has been conducted on analyzing the database
usage of systems using ORM technologies, almost none of the presented
works cope with dynamic and heterogeneous systems, where several of those
database access technologies co-exist (e.g., co-existing SQL and ORM-related
statements).

2.3.4 Program-Database Co-Evolution

While the community shows a growing interest in database schema evolution [Rahm
and Bernstein, 2006], researchers have only recently started to pay more attention to
the analysis of the co-evolution of database schema and application code.

Lin et al. [Lin and Neamtiu, 2009] study the so-called collateral evolution of
applications and databases, in which the evolution of an application is separated
from the evolution of its persistent data, or from the database. They investigated how
application programs and database management systems in popular open source
systems (Mozilla, Monotone) cope with database schema changes and database for-
mat changes. They observed that collateral evolution can lead to potential problems.
However, the number of schema changes reported is very limited. In Mozilla, 20
table creations and 4 table deletions are reported in a period of 4 years. During 6
years of Monotone schema evolution, only 9 tables were added while 8 tables were
deleted.

Qiu et al. [Qiu et al., 2013] conduct a large-scale empirical study on ten popular
database applications from various domains to analyze how schemas and appli-
cation code co-evolve. In particular, they study the evolution histories from the
respective repositories to understand whether database schemas evolve frequently
and significantly, how schemas evolve and impact the application code. In their
approach, the authors try to estimate the impact of a database schema change in the
code. This estimation is performed with a simple difference extractor calculating
changed source lines between two versions.
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WORK ANALYSIS INTER. TECHNO. GOAL

[CHRISTENSEN

ET AL., 2003;
GOULD ET AL.,

2004;
WASSERMANN

ET AL., 2007]

static 3 SQL checking the validity of SQL
queries

[WEI ET AL.,
2006]

static +
dynamic

7 stored
SQL pro-
cedure

preventing SQL injection
vulnerability

[FU ET AL.,
2007]

symbolic
execution

3 SQL preventing SQL injection
vulnerability

[CLARK ET AL.,
2011]

dynamic SQL SQL fault localization

[JAVID AND

EMBURY, 2012]
experiment embedded

SQL
fault diagnosis

[MAULE ET AL.,
2008]

static 3 SQL impact analysis

[BRINK ET AL.,
2007]

static 7 embedded
SQL

a quality assessment ap-
proach for SQL statements

[NGO AND TAN,
2008]

symbolic
execution

3 SQL extracting database interac-
tions from PHP source code

[LINARES-
VASQUEZ ET AL.,

2015]

interview none identifying how developers
document database usages
in source code

[LINARES-
VÁSQUEZ ET AL.,

2016]

static 7 SQL extracting database usage
in Java source code to
automatically redocument
database-related methods

[CHEN ET AL.,
2014]

static 7 ORM automatic framework to de-
tect ORM performance anti-
patterns

[GOEMINNE AND

MENS, 2015]
study SQL +

ORM
analyzing the survival of
database technologies

Table 2.2: Summary of research works focusing on database usage analysis.
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Karahasanoić [Karahasanović, 2002] studied how the maintenance of application
consistency can be supported by identifying and visualizing the impacts of changes
in evolving object-oriented systems, including changes originating from a database
schema. In particular, he focused on object-oriented databases rather than relational
databases.

Goeminne et al. [Goeminne et al., 2014] study the co-evolution between code-
related and database-related activities in data-intensive systems combining several
ways to access the database (native SQL queries and Object-Relational Mapping).
They empirically analyzed the evolution of the usage of SQL, Hibernate and JPA in
a large and complex open source information system. Interestingly, they observed
that the practice of using embedded SQL is still common today.

Using what-if analysis [Golfarelli et al., 2006] for changes that occur in the
schema/structure of the database was proposed by Papastefanatos et al. [Papaste-
fanatos et al., 2007, 2008, 2010]. They presented Hecataeus, a framework that allows
the user to anticipate hypothetical database schema evolution events and to examine
their impact over a set of queries and views provided as input by the user.

Maule et al. [Maule et al., 2008] propose static program analysis techniques for
identifying the impact of relational database schema changes upon object-oriented
applications. They studied a commercial object-oriented content management
system and statically analyzed the impact set of relational database schema changes
on the source code. They implemented their approach for the ADO.NET (C#) tech-
nology.

Liu et al. [Liu et al., 2013] propose a novel graph, called the attribute dependency
graph, to show the dependencies between attributes in a database application and
the programs involved. Their approach extracts the attribute dependency graph
out of a database application from its source code by using a interprocedural static
analysis. Their purpose was to aid maintenance processes, particularly impact
analysis. They implemented their approach for PHP-based applications.

Gardikiotis and Malevris [Gardikiotis and Malevris, 2009] introduced a two-
folded impact analysis based on slicing techniques to identify the source code
statements affected by schema changes and the affected test suites concerning
the testing of these applications. They implemented their approach for PL/SQL
applications.

Chang et al. [Chang et al., 2007] propose a formal framework for database refac-
toring which is based on a logical model of changes that can point to inconsistencies
in the application code and modeling problems.

Curino et al. [Curino et al., 2008, 2009, 2013] present a tool called PRISM++ to help
database administrators to predict and evaluate the effects on the applications due to
changes to the database. PRISM++ includes an automatic schema evolution history
analysis tool and a query rewriting engine as well to translate user queries across
schema versions. However, PRISM++ relies only on the analysis of the database side.

Grolinger et al. [Grolinger and Capretz, 2011] examined the database schema
evolution and proposed a unit test approach for the application code that accesses
databases. Their objective is to evaluate the code against the altered database.
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WORK APPROACH TECHNO GOAL

[LIN AND

NEAMTIU, 2009]
study SQL analyzing program-database co-

evolution in open-source sys-
tems.

[QIU ET AL.,
2013]

study none studying how programs and
database schema co-evolve over
time

[KARAHASANOVIĆ,
2002]

study SQL studying the impact of database
schema changes in evolving OO
systems

[GOEMINNE

ET AL., 2014]
study SQL +

ORM
studying the co-evolution be-
tween code-related and database-
related activities in DISS

[GOLFARELLI

ET AL., 2006; PA-
PASTEFANATOS

ET AL., 2007,
2008, 2010]

impact
analysis

SQL assessing impact of a database
schema change over a set of
queries and views provided by the
user

[MAULE ET AL.,
2008]

impact
analysis

SQL identifying the impact of rela-
tional database schema changes
upon object-oriented applica-
tions

[LIU ET AL.,
2013]

impact
analysis

SQL extracting the attribute depen-
dency graph out of a database ap-
plication

[GARDIKIOTIS

AND MALEVRIS,
2009]

impact
analysis

PL/SQL identifying the source code
statements affected by schema
changes

[CHANG ET AL.,
2007]

theoritical
framework
definition

none proposing a formal framework for
database refactoring

[CURINO ET AL.,
2008, 2009,

2013]

database
schema

evolution
automation

SQL assisting developers in database
schema evolution

[GROLINGER

AND CAPRETZ,
2011]

unit test
approach

SQL proposing a unit test approach
for the application code that ac-
cesses databases

Table 2.3: Summary of research works focusing on program-database co-evolution.

30



2.4. What kind of problems do we intend to address?

Discussion

Table 2.3 summarizes the presented related research. The first column contains
the related work references. The second column categorizes the type of presented
approach. The third column indicates the targeted kind of database access technolo-
gies. Finally, the fourth column reminds the main objective of each work.

Some interesting observations are made after analyzing the related work.

sMost of the related research works present studies analyzing how programs
and database co-evolve over time. Very few works in the literature propose an
impact analysis designed to assess the impact of a database schema change on
the source code. Generally, the presented impact analysis approaches evaluate
the impact of a database schema change on a set of queries/views/graphs
provided by the user.

s In addition, one observes a lack of automatic support giving automatic rec-
ommendations to users about the modifications necessary to perform in the
source code, at the line of code level, in case of database schema changes.

sFewer approaches are designed to target heterogeneous systems, i.e., using
several access technologies to access the database. More specifically, the
presence of ORM technologies and their evolution with the source code are
barely studied and supported, which constitutes an important challenge.

2.4 What kind of problems do we intend to address?

In this Chapter, we presented the main research tackling the problem of DISS evo-
lution. In particular, we articulated this state-of-the-art around three main axes,
namely database schema evolution, database usage analysis and program-database
co-evolution.

For each axis, we made interesting observations concerning the existing tech-
niques and approaches. The most striking observation is the severe lack of automatic
support for DISS evolution.

(a) Focusing on the evolution history of the database schema with the aim to
facilitate future developments is almost never considered by the literature.
We claim that analyzing the database schema evolution history is valuable to
understand the system and to facilitate DISS evolution.

(b) Detecting and analyzing the database usage in the source code often con-
stitutes a prerequisite to DISS evolution. Moreover, the database accesses
are often built in a more and more dynamic way in the code. Sometimes,
the SQL query sent to the database server is completely hidden to the user
because automatically produced by the ORM layer. In addition, several access
technologies can coexist in a same DISS, which makes its comprehension
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and evolution more complex. Very few research works tackle this problem of
dynamicity and heterogeneity while evolving DISS.

(c) Tools helping and supporting the user in the task of program-database co-
evolution are almost unexisting. In particular, we observe that recommenda-
tion systems, providing users with automatic recommendations about what
and where to change in the source code (at the line of code level), are cruelly
missing.

Roadmap

This chapter has summarized the literature in the field of DISS evolution. We made
interesting observations; in particular, we have observed that there is a severe lack
of automatic support for DISS evolution.

The next chapter (Chapter 3) explores the use of the database schema evolu-
tion history as an additional information source to aid database schema reverse
engineering.

Later, in Chapter 4, we present an analysis approach that aims to statically detect
database accesses within the source and to recover their actual SQL values. In
particular, this approach handles dynamic SQL as well as ORM technologies.
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This chaptera explores the use of the database schema evolution history as an addi-
tional information source to aid database schema reverse engineering. We present a
tool-supported method for analyzing the evolution history of legacy databases, and
we report on a large scale case study of reverse engineering a complex information
system.

aThis chapter extends two papers. The first one [Cleve et al., 2015] appeared in the journal
Science of Computer Programming in 2015. The second paper [Meurice and Cleve, 2014]
is a tool demo paper published in the proceedings of the IEEE CSMR/WCRE 2014 Software
Evolution Week.

3.1 Introduction

Database reverse engineering (DRE) has traditionally been carried out by consider-
ing three main information sources: (1) the database schema, (2) the stored data, and
(3) the application programs. Not all of these information sources are always avail-
able, or of sufficient quality to inform the DRE process. In recent years, the analysis
of the evolution history of software programs has gained an increasing role in reverse
engineering in general. Indeed, understanding the evolution history of a complex
software system can aid and inform its current and future development. Software
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repositories - such as source code version-control systems, issue/bug-tracking sys-
tems, or communication archives -, where current and historical artefacts and
interactions are registered, provide opportunities for historical analyses of system
evolution (see Figure 3.1). The mining software repositories (MSR) field exploits the
data available in software repositories. In recent years, many researchers have used
MSR techniques as a way to support software understanding and evolution.

Source 
Code 

Bug 
Tracker 

Issue 
Tracker 

Message 
Archive 

… 

Figure 3.1: Software repositories.

Most research work in this area has concentrated on program code, design and
architecture. But comparatively, little research has been carried out in the context
of database reverse engineering. This is an unfortunate gap as databases are often
at the heart of many of today’s information systems. Understanding the database
schema — which captures domain-specific concepts, data structures and integrity
constraints — often constitutes a prerequisite to evolving such systems.

In this Chapter, we present a historical analysis approach that allows us to analyze
the database schema evolution history by exploiting the versioning system.

3.2 Approach

Our approach consists of a historical analysis. That technique performs a compar-
ison of all the successive versions of the database schema. Therefore, the created
and deleted objects are emphasized. Our objective is to expose the evolution history
of the database schema, through the study of the lifetime of all the database objects.
Comprehending the past of the database schema can indeed significantly aid and
inform current and future development activities (e.g., recovering missing integrity
constraints, redocumenting the database schema, detecting bad design practices,
etc.).
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Furthermore, analyzing developers’ activities involved in the development and
maintenance processes, can considerably help at detecting the most qualified (group
of) person(s) for achieving specific database-related maintenance activities.

In particular, our general approach consists in extracting and comparing the suc-
cessive versions of the database schema from the versioning system, in order to pro-
duce the so-called historical database schema. The latter is a visual and browsable
representation of the database schema evolution over time. It contains all database
schema objects (i.e., tables, columns and constraints) that have existed in the history
of the system. Those schema objects are annotated with meta-information about
their lifetime, which in turn serve as a basis for the visualization of the schema and
its further analysis. This historical schema can be queried in order to derive valuable
information about the evolution of the database, potentially raising other interesting
system-specific questions to investigate. The global process that we follow to build
the historical database schema of a system consists of several steps. The approach
overview is depicted in Figure 3.2.

Software
Repository

SQL Code
Extraction

SQL File 2

SQL File 1

SQL File 3

SQL File …

SQL File m

Schema 2

Schema 1

Schema 3

Schema …

Schema n

Schema
Comparison

Historical
Schema

Enrichment

Visualization
Physical 

Extraction
+ Enrichment

Figure 3.2: Approach overview.

3.2.1 SQL Code Extraction

The objective of the SQL code extraction phase is to extract, for each system version,
all the SQL files constituting the complete DDL code required to fully create the
database. This extraction phase is performed by exploiting the versioning system,
which offers mechanisms for retrieving the different source code versions (including
the database schema) saved/committed during the system development/main-
tenance. For each committed version, useful information are registered such as
the accurate date of commit and the identity of the developer who committed the
version; this person is called the committer. By retrieving and gathering all these
information, questions like who committed what and when? can be answered.

3.2.2 Physical Extraction

When more than one DDL source file has been extracted for a single system version,
the previous SQL code extraction phase results in several partial extracted schemas.
The final physical schema must include the specifications of all these partial views,
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through a schema integration process. As output of this physical extraction phase, a
unique physical schema is computed for each system version.

3.2.3 Physical Schema Enrichment

Referential integrity is an important quality attribute of data stored in relational
information systems. It refers to the state where data stored in related tables obeys
to the foreign key constraints defined between those tables. Most modern DBMS
purposed for business applications provide features for declaring and automatically
enforcing foreign key constraints. However, many legacy information systems do
not use these features - or use them only to a limited degree (i.e., for more recently
developed functionality), particularly if their original design predates availability of
those mechanisms in the DBMS platform.

As previously discussed in Section 2.3.1, there exist several techniques to recover
implicit properties/constraints of the database schema. Moreover, exploiting differ-
ent information sources can help at inferring implicit (missing) foreign keys [Hainaut,
2002].

In our search for representing and comprehending the evolution of a database
schema, inferring those implicit referential constraints and thus, enriching the
extracted physical schema can bring important information. This problem is further
addressed in Section 8.3.

3.2.4 Schema Comparison

The objective of the schema comparison phase is to compare the successive extracted
physical schemas in order to incrementally derive the so-called historical schema.
The historical schema is an integrated representation of the evolution of the database
schema over time. It contains all database schema objects (i.e., tables, columns, keys
and indexes) that have existed in the history of the system. Those schema objects
are annotated with meta-information about their lifetime.

Let us now further illustrate the schema comparison step. The top side of Fig-
ure 3.3 gives an example of the evolution of a database schema, involving three
successive schema versions. Schema S1 is the oldest one and schema S3 is the most
recent one. One can see that between version 1 and version 2 column A2 has been
deleted, column B2 has been created as well as table D and its columns. Moreover
the entire table C has been dropped. In version 3, table B has disappeared, table D
has been left unchanged, and table C has re-appeared. Indeed, it used to exist in
version 1, it had been removed in version 2 and it is now back in version 3. We will
refer to that phenomenon by saying that a schema object may have several lives.

The historical schema derived from the schema evolution example is depicted
at the downside of Figure 3.3. The historical schema is a global representation
of all previous versions of a database schema, since it contains all objects that
have ever existed in the entire schema history. The historical schema is annotated
with a list of couples (d ate(Si );commi t ter (Si )) that provides, for each successive
schema version Si , the commit date (d ate(Si )) and the identifier of the committer
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Schema S1

A B C
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B1 C1
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Figure 3.3: Schema evolution example (top) and corresponding historical schema
(down).

(commi t ter (Si )). For each object of the historical schema, we know the list of
schema version dates where the object is present.

Algorithm 1 formalizes our procedure for deriving a historical database schema
SH from n successive schema versions. The historical schema derivation algorithm
is based on a pairwise comparison of all those schema versions. The algorithm starts
from an empty historical schema, and then iterates on all the schemas in chronologi-
cal order, while comparing the current schema Si with the current historical schema
SH . The comparison is made by iterating on each schema object (table, column, key
or index) of both schemas. Several situations may occur for a given schema object:

(a) o belongs to Si but does not belong to SH . This means that o has been created
in version i. We therefore add it to SH and sets its list of presence to its version
of creation, i .

(b) o belongs to Si and belongs to SH . In this case, we update its list of presence.
(c) o belongs to SH but does not belong to Si . In this case, the list of presence of o

remains unchanged.

Schema S1

A

A1
A2

Schema S2

A

A1’
A2

Historical Schema

A

A1
A1
A1’

A2

Figure 3.4: Example of a column modification between two schema versions and
the corresponding historical.

As previously described, the historical schema is an integrated representation
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1 Notations.sLet Si be a database schema version, defined as a set of schema objects
(including a set of tables and their respective columns, keys and indexes).sLet ver si ons(o) be the list of presence of object o.

Require: S1,S2, . . .Sn : n successive schema versions.
Ensure: SH : the corresponding historical schema.

// initializing SH

1: SH ←;
// iterating from the initial version to the latest version

2: for all i ∈ {1 . . .n} do
3: // objects o appearing in more than one version
4: for all o ∈ Si ∩SH do
5: ver si ons(o) ← ver si ons(o)∪ i
6: end for
7: // objects o not present yet in the historical schema
8: for all o ∈ Si \ SH do
9: SH ← SH ∪o

10: ver si ons(o) ← i
11: end for
12: end for

Algorithm 1: Deriving the historical schema from n successive schema versions.

of the database schema evolution. This historical representation can be queried in
order to recover a precise knowledge of the evolution history of the database schema.
Querying the historical schema can allow comprehending how the database schema
has evolved over time. Hence, knowing the exact state of any schema object at
anytime (i.e., at any system version) is primordial to understand its evolution. In
particular, we also consider the column modification as an important historical
knowledge. Column modification like a data type change of a particular column
between two successive schema versions is detected and recorded in the resulting
historical schema. Figure 3.4 depicts such a scenario where the data type of column
A1 changed between version S1 and S2. This modification is recorded and results
in the creation of two sub-columns representing the state of A1 before and after the
modification. Those sub-columns have, in turn, their own list of presence.

3.2.5 Historical Schema Enrichment

Detecting a table/column renaming between two successive schema versions is
an easy process when the SQL migration scripts are available. As illustration, the
following SQL statement renames table A as B :

ALT ER T ABLE A

RE N AME T O B ;
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Similarly, the following SQL statement renames column A1 of table A as A2:

ALT ER T ABLE A

RE N AME COLU M N A1 T O A2;

However, in absence of such scripts, the task of detecting renaming becomes
much more complex. Indeed, if table A is renamed as B , there is no direct way to
detect it and the historical schema considers that table A has been dropped while
table B has been created without keeping a link between both tables. In such a case,
one sees that a finer-grained approach is required.

The historical schema enrichment phase consists of the automatic recovery of
implicit table/column renamings in order to enrich the historical schema. One can
formalize the problem of column renaming detection as follows:

•S1 → ··· → Sn , the n successive database schemas where S1 is the initial
schema and Sn is the latest (current) one.
•SH , the historical schema.
•T , a table belonging to SH .
•c1 and c2, two columns belonging to T

Two necessary conditions for a column renaming come out. If one supposes that c1

was renamed as c2 at schema version Si , with i ∈ {2, . . . ,n}, then:

(a) c1 ∈ Si−1,∉ Si ∧ c2 ∉ Si−1,∈ Si

(b) c1 ' c2

The first condition ensures the presence of c1 at the schema version predating
its renaming, and its disappearance at the renaming version. Likewise, c2 only
appears once the renaming performed. The second condition means that c1 and
c2 are syntactically different but remain semantically equal. However, those two
conditions are not sufficient: one cannot detect a column renaming with certitude.
The best we can do is affirming there is a column renaming according to a particular
probability. This probability should represent the similarity value between c1 and
c2. The greater this value, the more similar the columns. Therefore, we can define
the function column_similarity:: Column × Column → [0,1], taking as input two
columns and returning the similarity value. This function can rely on several metrics,
such as:sThe similarity between the column names. Several existing algorithms address

this issue of string similarity. In particular, string distance algorithms measure
the similarity between two strings (e.g., Levenstein, Monge-Elkan, Smith-
Waterman, Jaro-Winkler distances) [Cohen et al., 2003].sThe similarity between the column types. The similarity between two columns
can also be measured by considering their datatype, cardinality, default value,
etc. Also, if the columns are part of identifiers, indexes, foreign keys, etc.

In summary, we could thus define the function column_similarity as follows:
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• column_similarity(c1,c2) =
α.stringDistance(c1.name, c2.name) + β.type_similarity(c1,c2)

• α + β = 1

such as α and β represent the weighting of each similarity criterion.
Finally, if the similarity value between c1 and c2 is equal to or greater than a

certain minimal acceptance value, c2 can be considered as the renamed version of
c1. Let us illustrate it with a concrete example. Let us suppose we search for the
implicit column renamings performed at schema version k, with k ∈ {2, . . . ,n}. Let,

•ck = {ck0 , . . . ,cks }, the set of columns of the table T created at version k
•dk = {dk0 , . . . ,dkt }, the set of columns of the table T dropped at version k
•p ∈ [0,1], the minimal threshold

We would like to detect the set of implicit column renamings performed at version k.
We can firstly compute the matrix C such as,

C =


c00 c01 . . . c0t

c10 c11 . . . c1t
...

...
. . .

...
cs0 cs1 . . . cst

 , such as

(1) ci j = δp (cki ,dk j )× column_si mi l ar i t y(cki ,dk j )

(2) δp (a,b) =
{

1, if column_si mi l ar i t y(a,b) ≥ p,
0, otherwise

A first way to address the problem of column renaming detection is to retain the
greatest similarity values respecting the minimal acceptance rate. However, in some
cases, this naïve solution could miss some renamings. Let us suppose that the
minimal acceptance value is fixed at p = 0.8 and the C matrix has the following form:

The maximal value (a, x) = 0.9 is retained, at the detriment of the couples (a, y)
and (b, x) which are inferior and thus skipped (since at most one couple per row
and column can be retained). The only remaining possibility of renaming for b
is the couple (b, y). Nevertheless, its similarity value 0.2 is less than the minimal
acceptance rate 0.8 and is therefore rejected. As result, the couple (a, x) is the only
detected renaming.
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However, through this example, we demonstrate that a more elaborated technique
would be preferable. Indeed, the choice of the couples (a, x) and (b, y) instead of, for
instance, the couples (a, y) and (b, x) is questionable.

Accordingly, we experimented a second technique which considers the present
problem of renaming detection as an optimization problem subject to a set of
constraints. Let X , the matrix of unknown factors such as

X =


x00 x01 . . . x0,n

x10 x11 . . . x1,n
...

...
. . .

...
xm0 xm1 . . . xm,n



Our technique consists in achieving the best outcome in a mathematical model,
namely the best composition of couples. This optimization problem can formalized
as follows:

max
∑∑∑n

i=0
∑∑∑m

j=0 ci j x j i

such as 
(1) ∀i ∈ {0, . . . ,n},

∑m
j=0 x j i = 1

(2) ∀ j ∈ {0, . . . ,m},
∑n

i=0 x j i = 1
(3) x j i ∈ {0,1}

The first (1) and second (2) conditions guarantee that only one unknown factor per
row and per column will be equal to 1. Column dk j is considered as renamed as
column cki if x ji is equal to 1; otherwise, the renaming is rejected.

This problem can be solved with linear programming (LP or also called linear
optimization). LP is an optimisation problem in which the objective function is
linear in the unknowns and the constraints consist of linear equalities and linear
inequalities [Luenberger and Ye, 2015]. LP aims to achieve the best outcome for the
optimization of a linear objective function, subject to linear (in)equality constraints.
Linear programs are problems that can be expressed in the following standard form:

max cx,
Ax = b, with x ≥ 0

Our optimization problem can be easily adapted to LP with a few matrix transforma-
tions.
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3.2.6 Visualization

The main aim of the historical schema is to propose a historical representation of
database schema evolution. This historical representation can be exploited and
queried in order to derive valuable information about the evolution of the database
which could facilitate future initiatives and developments. Some interesting system-
specific questions can be tackled by use of a visualization support. In particular, this
visualization support, exploiting the historical schema as main information source,
shall cope with some visual difficulties, like permitting an intuitive and efficient
visualization of large database schemas and system histories.

3.3 Tool Support

We implemented a tool support allowing us to compute and visualize the historical
schema in order to understand the database schema evolution history.

3.3.1 SQL Code Extraction

To achieve this task, we implemented a versioning system explorer which extracts
information about each system version that have ever been registered/committed
in the versioning system. Our explorer is currently designed to deal with SVN and
GIT as versioning system. For each system version, we automatically extract (1)
its identifier (generally a numeric/string value), (2) the date when the version was
committed (MM/DD/YYYY HH:MM:SS format), (3) the identifier of the developer who
committed the version (an example of encountered developer ids is her/his name or
email address) and (4) the SQL files (.sql, .ddl, ...) present in the version.

However, in order to be consistent and complete in this process, the assistance
of the user may be required for selecting the relevant SQL files to conserve/reject.
Indeed, the user is free to decide which files are (not) part of the database schema.
This pre-filtering phase is often necessary to avoid unexpected results which might
alter/pollute the actual database schema (e.g., migration SQL scripts, DDL code for
other platforms/DBMS, etc.).

Once the SQL file selection is confirmed, our tool merges the content of the
retained files, for each version. As output, we obtain a concise SQL/DDL file for each
system version.

3.3.2 Physical Extraction

The objective of the physical schema extraction phase is to extract the physical
schema corresponding to each SQL file obtained so far.

A first attempt of automated physical extraction was tried by use of the DB-
Main CASE tool 1. DB-Main is a tool dedicated to the database engineering domain.
DB-Main proposes several tools and in particular, it offers a pretended technology-
independent SQL parser which takes as input a DDL script and produces the corre-

1DB-Main, http://www.db-main.be.
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sponding physical schema, expressed in a proprietary format. However, based on
our experience, we encountered severe problems due to some parsing weaknesses.sThe SQL code resulting from the SQL code extraction phase does not always fit

the SQL parser of DB-Main. As illustration, we learned that the grammar used
by DB-Main only covers a subset of the MySQL grammar and other DBMS’s
grammar. Unfortunately the parser does not ignore the word when it does not
know it. It skips the entire line or even the entire table definition.sThe physical schema resulting from the DB-Main parsing phase is expressed
in a proprietary format and is either directly visualizable in DB-Main itself,
or manipulable via the API furnished JIDBM. However, we observed some
limitations of DB-Main when dealing with a big number of large database
schemas, in particular the response-time when loading them in memory.

Whereas we understand the complexity of implementing a complete DBMS-
independent SQL parser, we opted for a semi-automatic solution which is, in our
opinion, a balanced solution. We developed, in collaboration with the DB-Main
developers, a program (independent of DB-Main) taking as input the DDL code
and returning the corresponding physical schema. To achieve its task, the program
initially creates the target database by connecting the DBMS and executing the DDL
code. Once the database is created, the program accesses the metadata of the latter
(e.g., catalogs, schemas, table structures) and finally extracts its schema, tables,
columns and constraints (i.e., primary/unique/secondary/foreign keys, indexes,
etc.). The extracted physical schema is expressed in an XML form.

While this program is fully automatic, it nevertheless requires an installed and
running DBMS which is compatible with the DDL code to execute. This process
currently supports several DBMS, i.e., MySQL, Oracle, DB2 and PostgreSQL.

We then run this process on each system version to obtain the successive physical
schemas.

3.3.3 Physical Schema Enrichment

We designed an automatic tool-supported approach for detecting implicit referen-
tial constraints (i.e., foreign keys) by considering new information sources. This
approach, presented later in Section 8.3, permits us to enrich the extracted physical
schemas.

3.3.4 Schema Comparison

The challenge we face by implementing our historical schema derivation tool is to
be sufficiently scalable to analyze long histories and large database schemas in satis-
factory time. We therefore implemented a multi-threaded version of Algorithm 1.
This multi-threaded version separately handles each successive schema version (see
Figure 3.5). For each schema version, an independent thread is created per encoun-
tered table. The thread is responsible for deriving the historical information about
that table and its content (columns, keys and indexes). All parallel threads share
a common resource, namely the historical schema, that they can all update when
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they discover information about their respective tables. The main program thread
iterates over all successive schema versions and tables. This multi-threaded imple-
mentation can constitute a significant performance improvement of the efficiency
of our historical schema derivation tool, in presence of multi-core processors.
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Figure 3.5: Multi-threaded implementation of our historical schema derivation tool.

3.3.5 Historical Database Schema Enrichment

We designed a semi-automatic tool approach supporting the identification of im-
plicit (column/table) renamings. Our tool computes the most likely implicit renam-
ings according to different comparison criteria (e.g., name similarity, the column
type similarity, etc.). To achieve this objective, we implemented our tool based on
the linear programming method which aims at achieving the best outcome in the
mathematical model discussed in Section 3.2.5. The weight of each metric used to
define the similarity function can be configured according to the user’s will, as long
as the weighting sum is equal to 1.

However, we are aware that further experiments are required to prove the suit-
ability and efficiency of this technique and to validate this choice (instead of other
techniques).

3.3.6 Visualization

We implemented DAHLIA (DAtabase ScHema EvoLutIon Analysis), an interactive
visualization tool of database schema evolution. DAHLIA provides the user with a
visual and browsable representation of the database schema evolution history. It
takes the historical schema as input and allows one, among others, to (1) compare
two arbitrary schema versions, (2) extract the database schema at a given date,
(3) extract the complete history of a particular schema object (column/table), (4)
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extract various statistics about the evolution of the database schema, (5) analyze the
involvement of each developer in that evolution.

During the development of DAHLIA, we explored two different types of visual-
ization, namely a 2D and 3D visualizations.

2D mode

This mode proposes an interactive panel allowing one to manipulate the physical
objects of the historical schema and query their respective history. In this mode, the
historical schema is represented and displayed according to the entity-relationship
(ER) model. Figure 3.6 depicts an example of schema visualized in DAHLIA and
expressed as an ER schema. This schema includes several physical objects such as
tables, columns, identifiers (ID), foreign keys (FK) and indexes (INDEX).

Figure 3.6: An example of schema as visualized in DAHLIA 2D.

Several functionalities are offered to users for querying the historical schema.

Colourizing the historical schema. DAHLIA offers diverse features for extracting
historical knowledge about schema evolution. The first one gives a first insight
about the longevity of the physical objects. Our tool assigns a colour to each object
depending on its age and liveness. All objects depicted in green constitute the objects
which are still present in the latest schema version, while all red objects have been
dropped. The colour shades corresponds to the age of the objects. A dark red object
is an object that has been dropped a long time ago, whereas a light red (orange)
object is an object that has recently been removed from the schema. The darker
the green, the older the object is, and vice versa. Figure 3.7 depicts an example of
historical schema which is colourized according to this color pattern.

Filtering. DAHLIA proposes the user a filtering functionality allowing displaying
the database schema version corresponding to an input date/commit. In this way,
the user can accurately know the state of the database schema at any moment of the
development/maintenance phase.
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Figure 3.7: An example of colourized historical schema as visualized in DAHLIA 2D.

Displaying the complete history of a particular schema object. In addition, the
history of each single schema object is also available via our tool. This historical
information includes the date(s) of all creation, update and deletion operations, and
for each of them, the id of the corresponding developer.

Figure 3.8: The complete history of column PROGR AM_I D displayed in DAHLIA.

DAHLIA allows an in-depth analysis of the evolution of a given schema object.
Figure 3.8 shows the complete history of column PROGR AM_I D . The column has
been created on 29 April 2012 by the developer identified by
mat thew.ma20110628@g mai l .com. Then, the column has been removed on 15
February 2013 by anni ezhou91@g mai l .com and has immediately been recre-
ated on the same day by mar c@mdumonti er.com. The column has been finally
dropped on 19 February 2013 by the same developer. This evolution history gives
additional information about how the object has evolved over time.

Analyzing developers’ involvement. DAHLIA allows analyzing developers’ activi-
ties on the database schema. By activity, we mean any performed database schema
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change such as:sAdding a tablesDropping a tablesAdding a columnsDropping a columnsAdding an identifiersDropping an identifiersAdding a foreign keysDropping a foreign keysAdding an indexsDropping an indexsChanging a column datatypesRenaming a tablesRenaming a column
Figure 3.9 shows the activities of each developer, as visualized in DAHLIA. The

bar chart depicts the activities of each developer in terms of number of schema
changes. This chart aims to show up the database specialists. The pie chart shows
the proportions of schema change types occurred in the system life.

Figure 3.9: The charts of developers’ activities as displayed in DAHLIA.

Moreover, the schema changes performed by a given developer can be precisely
analyzed and displayed. Other features permit to reduce the search scope and
thereby, filtering developers’ activities on a particular table. Those features aim at
answering some primordial evolution questions such as ”who are the specialists of
that table/part of the database?”, ”who is the most appropriate (e.g., most experienced
or most qualified) person for achieving a particular database-related activity?”.
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Extracting evolution statistics. We also provide users with a historical schema
querying tool, allowing the extraction of interesting statistics regarding the evolution
of the schema of interest (the evolution of number of columns/tables, the evolu-
tion of the average number of columns per table, the number of columns/tables
created/deleted per version, ...).

Although the 2D visualization mode permits users to obtain precise details about
the historical database schema structures, it nevertheless has some drawbacks. In
particular, that 2D visualization is inconvenient for analyzing very large database
schemas and long histories. Indeed, visualizing database schemas containing hun-
dreds of tables and thousands of columns may prove complicated and may make
the analysis of such schemas laborious. In addition, this visualization mode does
not facilitate understanding how the schema has evolved over time. Figure 3.10 illus-
trates this issue when visualizing the historical schema containing several hundreds
of tables and columns. This schema was obtained by applying our approach to a
real-life subject system.

Figure 3.10: 2D Historical schema as visualized in DAHLIA.

Those observations, resulting of the use of the 2D mode during the in-depth
study of actual systems with large database schemas, outlined those weaknesses
and encouraged the implementation of a new visualization mode.

3D mode

In order to address those weaknesses, we implemented a 3D visualization mode
which offers new functionalities.

The city metaphor. The 3D mode makes use of the well-known city metaphor
of CodeCity introduced by [Wettel and Lanza, 2008a,b]. CodeCity is a language-
independent interactive 3D visualization tool for the analysis of large software sys-
tems. Based on the city metaphor, it depicts classes as buildings and packages as
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districts of a software city. The authors demonstrated the efficiency and effective-
ness of city-metaphoric visualization in the domain of program comprehension
and software evolution analysis. They conducted an extensive controlled experi-
ment over a period of six months in several countries, with academics and industry
practitioners [Wettel et al., 2011].

creations

tables

Figure 3.11: Historical schema visualized in DAHLIA as a 3D city.

In DAHLIA, a city represents the database schema and the buildings represent
the tables belonging to the schema. Another visualized concept, pertaining to the
table lifetime, is its creation date/version. All the tables with a similar creation ver-
sion are gathered in a same district. By use of this metaphor, several visual metrics
(summarized in Table 3.1) can be exploited:

(a) Building height: the building height is mapped on the number of columns.
This visual metric aims at giving indications about the table size and, thus,
allows directly detecting the massive and important tables.

(b) Building width: the building width (i.e., the building base size) represents the
number of schema changes happened during the table life. This visual metrics
aims at giving indications about the stability of each table.
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(c) Building color: a color is affected to each building according to the colouriza-
tion pattern applied to the historical schema. This visual metric aims at giving
indications about the longevity of each table.

The mapping between the database schema metrics and the visual metrics can
be (re)configured by the user. The user is naturally free to affect any width metric to
the building height and vice-versa. Table 3.1 only represents an "advised" metric
affectation. By applying those visual metrics to our historical schema, we obtain the
3D city representation as visualized in Figure 3.11.

City 
Building
District

DB Schema
Table
Creation

Height 
Width
Color

#Columns
#Changes
Age &

Size
Stability
Longevity

Metrics Indications

Concepts Concepts

Properties

visual
mapping

Liveness

Table 3.1: The visual mappings used in the city metaphor.

Visualizing database schema evolution. Likewise the 2D mode, DAHLIA 3D pro-
poses the user a filtering functionality to display the database schema version cor-
responding to an input date/version. Furthermore, a schema-diff feature is also
implemented and gives the opportunity to compare two different schema versions,
which was a tedious task with the 2D mode. It helps the user to intuitively visual-
ize how the schema has evolved over time. Figure 3.12 illustrates an example of
schema-diff between two given schema versions. We implemented a side-by-side vi-
sualization where the left city represents the oldest selected schema version and the
right city represents the most recent selected schema version. This dual visualization
uses its own colour pattern:

(a) A black building represents a table which remains unchanged between both
versions, namely a table present in both versions. Therefore, a black building
has an identical twin in the opposite city.

(b) A red building represents a table present in the left city (oldest version) but
absent/removed from the right city (most recent version). It thus represents a
table deleted between both versions.

(c) A green building represents a table present in the right city but absent from
the left one. It thus represents a table added between both versions.

(d) A blue building represents a table present in both versions but which was
modified (renamed, adding/deletion/renaming of columns/keys/indexes, ...).
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A blue building has a fraternal twin in the opposite city.

Figure 3.12: Example of schema-diff between two particular schema versions.

In addition, a finer analysis of the schema differences at the table scale is allowed;
clicking on a particular building of a city will (1) highlight, if present, the twin table
in the opposite city, and (2) display the table-diff on an information panel. In
Figure 3.12, the user has clicked on a particular blue table of the left city; the twin
table has been highlighted in the right city. Also, a 2D representation of the table-diff
is provided, using the same colour pattern - in this case, one observes the addings of
several columns between both versions.

Another interesting implemented feature is the possibility to have an overview
of how the database schema has evolved over time. For that, we conceived a "time
traveller" (see Figure 3.13) which allows us to successively display all the schema
versions - and thus, cities - of the studied system. With this time traveller, users can
control and visualize the movie of the evolution of the database schema and observe
phenomenons like the destruction of entire districts, the appearance of massive
buildings, the renovation (modification) of buildings, etc.

Visualizing developers’ activities. This 3D representation of a database schema
provides us with new possibilities to visualize developers’ activities. We imple-
mented a new functionality which aims to project the specialization level of a given
developer on the city. Figure 3.14 shows the specialization level of a given developer.
This specialization level is expressed according to a shading scale. This scale aims
to colourize the database tables according to the modifications performed by a
given developer. Light pink buildings represent tables barely impacted by this devel-
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Figure 3.13: Time travel - Successive display of the different schema versions.

oper (i.e., fewer modifications performed on those tables), whereas red buildings
represent tables which were significantly impacted by this developer.

Such a visualization facilitates detecting the expertise domain of each developer.

3.4 Application To Real-Life Systems

We selected six popular open-source database applications from different domains,
and we used our historical schema approach and DAHLIA to visualize the evolution
of their database schema.

(a) OSCAR: OSCAR2 is full-featured Electronic Medical Record (EMR) software
system for primary care clinics. It is widely used in hundreds of clinics across
Canada. The OSCAR system is further discussed in Section 3.5.

(b) MediaWiki: MediaWiki3 is a free and open source wiki software, used to power
wiki websites such as Wikipedia, Wiktionary and Commons, developed by the
Wikimedia Foundation and others.

(c) TikiWiki: TikiWiki4 is a free and open source wiki-based, content management
system and Online office suite.

2http://oscar-emr.com/
3https://www.mediawiki.org/wiki/MediaWiki
4https://tiki.org/tiki-index.php
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Figure 3.14: Visualization of the activities of a given developer projected on the city.

(d) PrestaShop: PrestaShop5 is a free, open source e-commerce solution.
(e) OpenMRS: OpenMRS6 is a collaborative open-source project to develop soft-

ware to support the delivery of health care in developing countries (mainly in
Africa).

(f) Broadleaf Commerce: Broadleaf Commerce7is an open-source, e-commerce
framework.

Table 3.2 describes the six subject systems, the studied period and their evolution.
The history of OSCAR, MediaWiki, OpenMRS and Broadleaf has been extracted
from their respective GitHub repository, while PrestaShop and TikiWiki use SVN
as version control system. As previously discussed, our tool approach allows the
automatic extraction of the schema history from those two popular version control
systems, i.e., Git and SVN. Table 3.3 shows, for each project, the distribution of the
atomic database change types. The most frequent operation is the modification
of the column datatype. Furthermore, one notices the general evolution trend is
adding new structures, especially columns, tables and indexes. The developers rarely

5https://www.prestashop.com/
6http://www.openmrs.org/
7http://www.broadleafcommerce.com/
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remove existing data structures. The figures of Table 3.3 have been automatically
produced by DAHLIA.

Project Studied Period #Tables #Columns #Versions
OSCAR 07/2003 → 06/2013 88 → 445 2443 → 13364 670

MediaWiki 05/2003 → 08/2013 17 → 50 100 → 337 359
TikiWiki 12/2006 → 07/2013 206 → 248 1525 → 1974 623

PrestaShop 12/2008 → 09/2012 113 → 157 564 → 890 229
OpenMRS 12/2007 → 04/2015 72 → 88 564 → 950 164
Broadleaf 02/2019 → 03/2015 24 → 178 145 → 987 118

Table 3.2: The 6 studied database applications and their evolution.

Change type (%) OSCAR MediaWiki TikiWiki PrestaShop OpenMRS Broadleaf
Adding a table 9.7 9.6 19.4 19.6 3.3 9.5
Dropping a table 1.5 3.9 3.4 1.7 1.4 5.5
Adding a column 28.7 15.7 14.7 14.9 23.7 17.2
Dropping a column 3.5 5.4 2.5 2.6 6.8 13
Adding an ID 0.8 2.5 1.6 2.7 0.6 2.4
Dropping an ID 0.3 0.9 1.4 0.7 0.5 2.5
Adding a FK 0.05 0 0 0 5.7 5.4
Dropping a FK 0.2 0 0 0 2.5 5.4
Adding an index 2.3 12.5 5.4 14.7 8.3 10.8
Dropping an index 0.4 4.3 2.3 2.3 3 8.9
Changing a col. type 41.6 44.1 48.8 39.6 41.8 18
Renaming a table 0.2 0.11 0.1 0.1 0.2 0.8
Renaming a column 10.6 0.9 2.5 1 1.8 0.6

Table 3.3: Distribution of schema changes across the six subject systems.

Figures 3.15, 3.16, 3.17, 3.18, 3.19 and 3.20 depict the 3D historical schemas of,
respectively, OSCAR, MediaWiki, TikiWiki, PrestaShop, OpenMRS and Broadleaf.
Each city has its own characteristics and architecture.sOSCAR: the OSCAR city combines very high buildings with flat fields, what

depicts a quite strong inequality within the schema, in terms of size (some
tables have more than thousand columns). Moreover, the large majority of the
oldest tables are still existing in the latest studied schema version. However,
the schema has undergone significant changes during its lifetime, with the
successive adding of table districts over time which, in turn, have evolved. As
example, one can observe that some of the highest tables were only recently
created.sMediaWiki: the MediaWiki city presents a smaller and more balanced schema
in terms of size, with a maximum of 26 columns per table. Moreover, the latest
schema version is, in majority, composed of the oldest tables. Indeed, the
schema has only undergone small changes over time, with small additions of
tables between versions.sTikiWiki: the TikiWiki city presents a balanced mix of small and high tables
(a maximum of 62 columns per table). The highest tables are also the oldest
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Figure 3.15: 3D Historical schema of OSCAR.

Figure 3.16: 3D Historical schema of MediaWiki.
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Figure 3.17: 3D Historical schema of TikiWiki.

Figure 3.18: 3D Historical schema of PrestaShop.
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Figure 3.19: 3D Historical schema of OpenMRS.

Figure 3.20: 3D Historical schema of Broadleaf.
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ones. Although some of the oldest tables were removed, most of them are still
existing in the latest schema version.sPrestaShop: the Presthop city presents a quite similar architecture to TikiWiki,
with a mix of small and high tables (a maximum of 50 columns per table). Like
TikiWiki, the oldest tables are the highest ones and are still existing in the latest
schema version. Only fewer tables were removed over time. The schema has
only undergone the addition of few small tables.sOpenMRS: the OpenMRS city depicts a quite homogeneous schema where
the column number of every table seems quite similar. The creation of new
tables is very rare, with only 5 districts of tables. Furthermore, very few tables
were removed over time. In general, one observes a certain schema stability,
with little changes.sBroadleaf: the Broadleaf city presents a balanced schema, in terms of size (a
maximum of 30 columns per table). However, unlike the other 5 cities, one
can observe the removal of a certain number of tables, especially among the
oldest tables.

Logically, we observe a common property to every city; the oldest tables mainly
represent the less stable tables, i.e., the tables with the higher number of changes.

OSCAR MediaWiki TikiWiki

PrestaShop OpenMRS Broadleaf

Figure 3.21: Information about the developers involved in the evolution of the
database schema - a slice corresponds to the number of tables impacted by a devel-
oper (one slice per developer).

Figure 3.21 shows the involving of the developers of each studied project. Each
slice corresponds to a developer and its size represents the number of distinct tables
impacted by the developer (by creating, updating or deleting the table). Those
figures have been automatically generated by DAHLIA. One can see the distribution
of the OSCAR, MediaWiki and Broaleaf developers is quite homogeneous (fewer
specialists), whereas a big part of the database changes of TikiWiki, PrestaShop and
OpenMRS is performed by a single person (two people in OpenMRS).
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Distributing responsibility among developers: which strategy?

During its lifetime, a system is subject to continuous modifications and its database
schema undergoes structural changes. Those schema changes, required to keep
systems adapted to ever-changing business and technological needs, are performed
by the developer team. Hence, a question appears: to what developers the task of
performing database schema changes should be assigned? the choice of the strategy
to adopt may be crucial since it influences the evolution of the database schema.
Different strategies can be adopted like (1) permitting each developer of the project
to modify the database structures or (2) distributing responsibility among very few
developers. Each strategy has its own advantages and weaknesses.

Permitting every developer. This strategy is the most permissive since every devel-
oper implied in the development project is allowed to modify the database structures
at will. This strategy reduces the chances to have database specialists on who the
the project success depends. This strategy can be a useful asset to struggle with the
nowadays increasing turnover in the development teams. However, this strategy can
unfortunately lead to a progressive deterioration of the database schema and to an
increasing unmaintainability of the documentation over time. In addition, adopt-
ing such a strategy also necessitates a better synchronization and communication
between developers. As illustration, the OSCAR system (as depicted in Figure 3.21)
seems to adopt a quite permissive strategy; the distribution is quite homogeneous
(no specialists) and large (> 40 developers). However, some problems of communi-
cation between developers were observed. Figure 3.22 depicts a typical scenario that
one can observe when analyzing the evolution history of the OSCAR database. In
February 2013, the PROGRAM_ID column was deleted by anniezhou31@gmail.com.
Yet, all other developers do not seem to be aware of this deletion; indeed, on the
same day, marc@mdumontier.com immediately recreated the column and finally
realized, a few days later, that this deletion was actually intentional and definitely
dropped it. This lack of communication is observable in numerous other examples.

Figure 3.22: Illustration of misunderstandings between OSCAR developers while
modifying the database structures.
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Distributing among very few developers. The opposite strategy could consist in
restricting the right to modify the database schema to a few developers. As conse-
quence, those privileged developers become the database specialists and have all
the database knowledge. Choosing such a restrictive strategy helps avoid disorder
introduced by too many developers modifying the database schema. Moreover,
limiting the number of developers in charge of modifying the database schema can
facilitate keeping a precise and up-to-date database documentation. However, the
disadvantage of this strategy is that if those specialists quit the project, its future
developments will be seriously compromised. As illustration, it would be difficult
to imagine the consequences if the OpenMRS database specialists quit the project
(more than 66% of the database schema have been impacted by two database spe-
cialists).

Towards a balanced strategy? Whereas this dissertation does not aim to answer
the question "which strategy is better than the other one?" (the answer would be
probably different according to the context and policy of the project), we discuss
here the weaknesses and advantages of each strategy. Our intuition would encourage
a more balanced solution, namely homogeneously distributing the modification
right among a limited but sufficient number of developers. An illustrative exam-
ple is the distribution among the Broadleaf developers; the database knowledge
is fairly distributed among less than 20 developers. The limited number allows
keeping a certain discipline and order, while the homogeneous distribution limits
the consequences of a developer leaving the project.

3.5 An In-Depth Case Study

In this Section, we particularly focus on a large scale case study of reverse engineering
a complex information system, namely the OSCAR system. Through this case study,
we motivate the benefits of using our approach in the context of a real-world project.
In particular, we show how our approach facilitates at understanding the OSCAR
system, with the objective of evolving the latter to fit new requirements.

3.5.1 Context: The OSCAR system

OSCAR (Open Source Clinical Application Resource) is full-featured Electronic Medi-
cal Record software system for primary care clinics. It has been under development
since 2001 and is widely used in hundreds of clinics across Canada. As an open
source project, OSCAR has a broad and active community of users and developers.
The Department of Family Practice at McMaster University, which has managed
OSCAR development efforts from inception to 2012, has recently transferred over-
sight of ongoing development to a newly formed not-for-profit company called
OSCAR-EMR. This move was motivated by a new regulatory requirement to undergo
ISO certification (ISO 13485 Medical devices – Quality management systems).
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OSCAR Architecture. OSCAR relies on a Web application architecture following
the classical 3-tier paradigm. It employs a Java-based technology stack, making
use of Java Server Pages (JSP), Enterprise Java Beans (J2EE) and several frameworks
such as Spring, Struts and Hibernate. The source code comprises approximately
two million lines of code with a rough distribution of 600 kLOC for the application
logic, 1200 kLOC for the presentation layer and 100 kLOC for the persistence layer.
OSCAR uses MySQL as the relational database engine and a combination of different
ways to access it, including Hibernate object-relational middleware, Java Persistence
Architecture (JPA) and dynamic SQL (via JDBC). The reason for this combination of
technologies is the constant and ongoing evolution history of the product, which
originated from JDCB, via Hibernate to JPA.

OSCAR database. The OSCAR database schema has over 440 tables and many
thousands of attributes. At the time of conducting our study, the database schema of
the OSCAR distribution did not contain any information on relationships between
tables (foreign keys) and no documentation was available about the schema. We later
learned that the missing relationships were due to the evolution history of OSCAR,
which has been using the older MyISAM database engine provided by MySQL, which
does not support foreign keys. A port to the newer InnoDB engine is underway,
which will eventually allow foreign keys to be defined explicitly.

OSCAR software repositories. The OSCAR community utilizes a range of software
repositories and tools, including a feature request and bug tracking system (provided
by Sourceforge), a source code submission and review system (Gerrit Code Review),
a git-based configuration management system, a community Wiki (based on Plone)
and three active mailing lists (one for developers and two for users of different levels
of technical expertise).

The need to understand the database schema. The OSCAR database has grown
organically over many years and knowledge about its internal structure is distributed
among very few developers who have been contributing to specific functions of the
system (e.g., prescription writer, representation of lab results etc.). Our need to
understand the OSCAR database schema originated from our collaboration with the
SCOOP team8 involved in a project with the goal to develop software for a primary
care research network (PCRN). The purpose of the PCRN is to integrate health
information kept in primary care EMR software in order to make them accessible
to medical research and data mining. An important step in developing the PCRN
software is to create "export conduits" for transferring health data from the EMR
into a research database for subsequent query processing. Due to its popularity
(second largest market share in British Columbia) and openness, OSCAR has been
chosen as one of the first EMR products to interface with the emerging PCRN.

While designing early versions of the PCRN data migration adapter for OSCAR,
the SCOOP team found that they were running into questions pertaining to the

8http://scoop.leadlab.ca/
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database schema. Of course, as could be expected for any heavily evolved, real-
world system, some of them had to do with the fact that the database schema lacked
documentation. Moreover, the schema did not contain any declared relationships
(foreign keys). Other questions were of a more semantic and puzzling nature. For
example, when attempting to design the function to export data on patient immu-
nization records, they found two seemingly unrelated schema structures covering
the same semantic issue. One schema structure revolved around tables entitled "im-
munizations" and "configimmunization" while the other schema structure revolved
around tables entitled "preventions" and "preventionsext". During this project they
found that taking into consideration the evolution history of the database schema
was helpful in answering questions like these (we found out that the "preventions"
structured superseded the "immunizations" structure but has still be retained in or-
der to deal with legacy data). This motivated us to investigate more formally OSCAR’s
evolution history and develop methods and tools to help with this investigation.

3.5.2 Report

We analyzed the history of the OSCAR database schema over a period of almost ten
years (22/07/2003 - 27/06/2013). During this period, a total of 670 different schema
versions can be found in the project’s GitHub repository. The earliest schema version
analyzed (22/07/2003) includes 88 tables, while the latest schema version considered
(27/06/2013) comprises 445 tables.

Based on those 670 schema versions, we computed the corresponding historical
schema. The historical schema contains 552 tables and 18,443 columns. Figures 3.10
and 3.15 depict the historical schema as visualized, respectively, in 2D and 3D. In
both representations, we applied our colourization procedure depending on its age
and its liveness (see Section 3.3.6).

We then made use of DAHLIA to query the historical schema and extract inter-
esting statistics regarding the evolution of the schema. Some of those statistics for
the OSCAR database are given below.

Figure 3.23 (A) depicts the evolution of the number of tables in the OSCAR
schema. We can observe that this number keeps increasing. Indeed, we found out
that in our case study, developers are very reluctant in removing tables in order
to achieve backward compatibility and avoid the important impact of a schema
refactoring on the data and the application programs. From the same figure, we
can also easily identify those schema versions that could be considered as "major
releases", i.e., those versions where an important number of tables have been added
and/or deleted.

Figure 3.23 (B) represents the evolution of the total number of columns in the
OSCAR schema, that has grown from 2,443 to 13,364 columns in circa ten years.
Fortunately, this number follows a similar trend as the evolution of tables, keeping
the average number of columns per table quite stable over time (around 25).

Figure 3.24 (A) provides some finer-grained information about the creation and
deletion of tables. One can easily notice that OSCAR tables are rarely removed. The
evolution of the schema consists (most of the time) of adding tables, while not
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 (A)

 (B)

Figure 3.23: Extracted information from the OSCAR historical schema: (A) evolution
of the number of tables; (B) evolution of the number of columns.

replacing or splitting them up. The total number of deleted tables is around 30, and
we can again quickly identify the major release time periods. The observation is
similar for the ratio of created and deleted columns, as shown in Figure 3.24 (B). The
number of column creations is, indeed, often greater than the number of column
deletions. During our test period, a total of 3,872 columns were removed, while
14,793 columns were created.

Table 3.4 provides statistics about the different types of schema changes applied
to the OSCAR schema during the studied period. In those statistics, the add column
operation corresponds to the creation of a new column in an existing table. Creating
a table including n columns only counts as one add table operation, not as n add
column operations.

Figure 3.25 (A) shows the classification of the OSCAR tables according to two
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(A)

(B)

Figure 3.24: Extracted information from the OSCAR historical schema: (A) cre-
ation/deletion of tables; (B) creation/deletion of columns.
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(A)

(B)

Figure 3.25: Extracted information from the OSCAR historical schema: (A) table
creation version VS table size; (B) table creation version VS number of changes.
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add table 443 add identifier 48
drop table 86 drop identifier 21
add column 2 091 add foreign key 3
drop column 703 drop foreign key 12
add index 125 change default value 23
drop index 32 change column type 342
add default value 1 509 set nullable column 32
drop default value 47 set non-nullable column 27

Table 3.4: Distribution of the OSCAR schema changes during the considered time
period.

dimensions: their creation schema version (x-axis) and their size, expressed in
number of columns (y-axis). One can notice that the large tables (over 200 columns)
are created throughout the whole life of the system. This means that those tables
are not a reflection of early design problems but are still being generated and used
now. We investigated further this unexpected observation and found that the large
tables were related to a user-programmable extension mechanism of OSCAR, which
provides “power-users” with tools to add so-called e-forms to OSCAR for capturing
form-based clinical data input.

Another interesting property, particularly in the context of database migration, is
the stability of the tables. A table that has been created a long time ago, and that was
not subject to frequent modifications can be considered stable. In Figure 3.25 (B),
we characterize each table with respect to the number of times it has been modified
since its creation, and we relate this information to its creation version. One can
see that the database schema is globally stable, most of the tables having less than
4 modifications. As expected, it is mainly the oldest tables that have the highest
number of changes, but there are a few exceptions.

Figure 3.26 relates the OSCAR developers with the evolution of the schema. Fig-
ure 3.26 (A) shows, for each developer, the number of distinct tables in the evolution
of which he/she has been involved (by creating, updating or deleting the table). We
observe than the few most active schema committers have hardly touched 20% of
the OSCAR tables.

Figure 3.26 (B) provides a set of points (x, y) meaning that developer x has been
involved in the evolution of table y . Such information is useful, for instance, to
identify the experts of a given table, or the creator of a given schema object.

3.5.3 Discussion

Analyzing the evolution history of the OSCAR database schema has helped us to
understand the current schema structure. We were surprised to see that schema
structures are rarely deleted even if they are semantically replaced by others, for
example as in the case of the “preventions” table structure replacing the “immuniza-
tions” structure. In these kinds of situations, our tool-based method allowed us to
easily determine which schema structure superseded which other schema struc-
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Figure 3.26: Information about the developers involved in the evolution of the
OSCAR database schema. (A) number of tables impacted by each developer; (B)
table vs developer matrix.
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ture. There are potentially multiple explanations for keeping these legacy schema
structures. The most likely explanation is domain-specific, namely that they are
kept for medico-legal reasons: a patient record (electronic or otherwise) is a legal
document that can only be amended but not deleted or arbitrarily modified. Keep-
ing superseded database schema structures is the easiest way of accommodating
older patient data that uses these outdated fields. Indeed, in case of the preventions
tables, the OSCAR preventions user dialogue has at the bottom a link entitled “old
immunizations”, which allows the user to access the legacy data.

To some degree, the creation of new schema structures to semantically replace
existing ones without removing them is similar to the well-known process of “cloning”
in program code. Therefore, the preventions tables and the immunization tables
could be considered as database clones. However, subtle differences exist to the
concept of program clones. For example, program clones are usually still made up
of functional code (as opposed to dead code), while the superseded database clone
may indeed be considered as a “dead schema” from the point of view of a newer
installation of the system that does not have to deal with legacy data.

Another important insight created by our schema evolution analysis method
was a better understanding of the role of the many large-scale tables that contain
hundreds or even thousands of attributes. The information content of these tables
overlaps significantly with other parts of the transactional database. Therefore, our
initial hypothesis (before considering the evolution history) was that these tables
were relicts of early database designs. The evolution analysis, however, refuted this
hypothesis and indicated that these tables are indeed being generated throughout
the system lifetime. Further investigation showed that they were connected to
an extension mechanism. The SCOOP team was therefore able to exclude them
for the first phase of their database migration project, which simplified their task
significantly.

3.6 Concluding Remarks

In this Chapter, we presented a historical approach that allowed us to analyze the
evolution history of a given database schema. The method is based on the automated
derivation of a historical schema, that includes all the schema objects involved in
the entire lifetime of the database, each annotated with historical and temporal in-
formation. This historical analysis permits the detection of several schema changes
occurred in the system lifetime. However, more sophisticated analysis techniques
have to be developed in order to identify schema changes as splitting a table, or
merging two tables into one single table. Since our approach only considers succes-
sive schema versions as input, such refactoring operations are currently seen as the
combination of deletion and creation operations.

Secondly, we presented DAHLIA, a novel visualization tool that allows us to
exploit and visualize a historical schema and its information. This tool proposes
a 2D and 3D visualization mode. The latter implements the 3D city metaphor
proposed by CodeCity.
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Finally, we applied our whole tool-supported approach to several subject systems.
In particular, we reported on our experiences made in the context of large-scale
project aiming at evolving OSCAR, a large and complex medical information system.
We showed the benefits of our approach.

Roadmap

In this chapter, we have presented a tool-supported method for analyzing the evolu-
tion history of legacy databases, and we have shown its benefits on a large scale case
study of reverse engineering a complex information system.

Later, in Chapter 8, we show how analyzing the evolution history of NoSQL sys-
tems can be indispensable to prevent errors and data losses for future developments.

The next chapter (Chapter 4) addresses the problem of DISS evolution from
another side; it presents an analysis approach to automatically detect and extract
database access from the source code. In particular, this approach handles dynamic
SQL and ORM technologies.
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While the previous chapter focused on the exploitation of the database schema evolu-
tion history as main source of information to aid database schema reverse engineering,
this chaptera addresses the problem of data-intensive system evolution from another
side. In this chapter, we present an analysis approach that aims to statically detect
database accesses within the source and to recover their actual SQL values. This auto-
matic approach, specifically designed for Java systems, targets three main database
access technologies, i.e., JDBC, Hibernate and JPA. We secondly evaluate our approach
on three real-life systems.

aThis chapter is an extension of our main conference paper [Meurice et al., 2016c] pub-
lished in the proceedings of the 28th International Conference on Advanced Information
Systems Engineering (CAISE 2016).

4.1 Introduction

In various maintenance and evolution scenarios, developers have to determine
which portion of the source code of their applications accesses (a given fragment
of) the database. Let us consider, among others, the cases of database reverse engi-
neering, database refactoring, database platform migration, service identification,
quality assessment or impact analysis for database schema change. In the context of
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Figure 4.1: Overview of the proposed approach.

each of these processes, one needs to identify and analyze all the database queries
executed by the application programs.

In the case of systems written in Java, the most popular programming language
today [TIOBE Programming Community Index, 2017], database manipulation has
become increasingly complex in recent years. Indeed, a large-scale empirical study,
carried out by Goeminne et al. [Goeminne and Mens, 2015], reveals that a wide range
of dynamic database access technologies are used by Java systems to manipulate
their database. Data-intensive applications tend to access their underlying database
in an increasingly dynamic way. The queries that they send to the database server
are usually generated at runtime, through string concatenations and method calls.
Moreover, some access mechanisms (like ORM frameworks) partly or fully hide the
actual SQL queries executed by the programs [Cleve et al., 2010]. Those queries
are generated at runtime before they are sent to the database server. This trend
significantly complicates the task of identifying which portion of the source code
accesses which portion of the database.

In this Chapter, we address this problem of recovering the traceability links
between Java programs and their database in presence of such a level of dynamicity.
We propose a static analysis approach allowing developers to identify the source
code locations where database queries are executed, and to extract the set of actual
SQL queries that could be executed at each location. The approach is based on
algorithms that operate on the call graph of the application and the intraprocedural
control-flow of the methods. It considers three of the most popular database access
technologies used in Java systems, according to [Goeminne and Mens, 2015], namely
JDBC, Hibernate, and JPA.

4.2 Approach

Figure 4.1 presents the overview of our approach which combines three different
analyses: the JDBC, Hibernate and JPA analyses. The output of the full process is
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1 public class ProviderMgr {
2 private Statement st;
3 private ResultSet rs;
4 private boolean ordering;
5

6 public void executeQuery(String x, String y) {
7 String sql = getQueryStr(x);
8 if(ordering)
9 sql += " order by " + y;

10 rs = st.executeQuery(sql);
11 }
12 public String getQueryStr(String str) {
13 return "select * from " + str;
14 }
15 public Provider[] getAllProviders() {
16 String tableName = "Provider";
17 String columnName = (...) ? "provider_id" : "provider_name";
18 executeQuery(tableName, columnName);
19 ...
20 }
21 }

Listing 4.1: Java code fragment using the JDBC API to execute a SQL query (line 10).

a set of database access locations and the database objects (tables and columns)
impacted/accessed by a given access. Those database objects are detected based on
the actual database schema.

4.2.1 Initial Analysis

Call Graph Extraction. The complete recovery of a query executed in a given Java
method is a complex process. In most cases, a SQL query (a database access in
general) is constructed using some of the input parameters of the given method. For
instance, the executeQuerymethod in Listing 4.1 uses its parameters for construct-
ing the SQL query. Consequently, the local recovery of the query is not sufficient and
the exploration of the call graph of that given method is necessary for determining
the different possible values of the needed parameters. We designed an approach
based on interprocedural data-flow analysis in order to deal with the call graph
reconstruction and the extraction of every possible value of the parameters used in
the query construction.

Database Access Detection. The database access detection step aims to detect all
the source code locations querying the database by means of a JDBC/Hibernate/JPA
method. Our analysis approach constructs an abstract syntax tree and uses a visitor
to navigate through the different Java nodes and expressions. We defined an exhaus-
tive list of JDBC, Hibernate and JPA methods accessing the database (based on the
documentation of each technology). Our detection is designed to detect the calls of
those methods and to send them to the corresponding analysis (JDBC, Hibernate or
JPA analysis).
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Figure 4.2: Overview of the JDBC analysis.

4.2.2 JDBC Analysis

Our JDBC analysis, depicted in Figure 4.2, focuses on the database accesses using
the JDBC API, where we follow a two-phase process. A JDBC access recovery can
be seen as a String expression recovery. Once our analysis approach has detected
a JDBC access, it will then rebuild the corresponding SQL query. Finally, the SQL
parsing process constructs the abstract syntax tree of the SQL query and identifies
which part of the database schema is involved in that access; that is, it identifies the
database tables and columns accessed with it. This identification relies on the actual
database schema.

SQL Query Extraction. Algorithm 2 formalizes the first phase allowing the recov-
ery of all the possible string values of an expression (a more detailed description of
the used procedures is given in Algorithm 3). First, we locally resolve the expression
and then we deal with the call graph extraction, when it is necessary. Let us apply
Algorithm 2 on the sample code in Listing 4.1. This algorithm gets executed when the
Database Access Detection finds a JDBC-based data access, i.e., st.execute(sql).
Here, sql is the String expression which will be recovered by the algorithm and
which is located in the method executeQuery(String x, String y). These two
elements will be the inputs of the algorithm. First, the algorithm extracts the pos-
sible local values of sql, i.e., ‘select * from x’ and ‘select * from x order
by y ’ (line 2). Then it deals with the x and y input parameters by extracting the call
graph first. Analyzing the call graph allows us to recover the possible values of the
parameters. We illustrate this step for each possible value.

(1) Let value = ‘select * from x’; x is the only parameter of theexecuteQuery
method (line 4). The algorithm explores the code for retrieving the expressions
invoking the executeQuery method (line 8). It returns only one call expression,
namely executeQuery(tableName, columnName). The next step is to retrieve
t ableN ame (line 10), the input expression corresponding to x. For this step, we
recursively resolve the expression t ableN ame (line 13); the result is ‘Provider’.
Then, we replace all the input parameters with their corresponding values obtained
earlier (line 15). In this example, we merely replace x with ‘Provider’ and thus, the
resulting value for the query string is ‘select * from Provider’.
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Procedure recoverExpr(Expression expr, Method method)
Input: a Java expression representing a String value and the Java method where

the expression is located.
Output: the list of every possible String values corresponding to this expression.
1 Expr[] result = initialize()

// Locally extracting the values of the given expression
2 Expr[] values = getLocalValues(expr, method)
3 for value ∈ values do

//Extracting the used input parameters from the current value
4 Variable[] inputs = getInputParams(method, value)
5 if inputs = null then
6 result.add(value)
7 else

//Extracting the call graph of the given method in order to
recover the value of each used input

8 MethodCallExpr[] callGraph = callGraph(method)
9 for call ∈ callGraph do

//Extracting the input values from the current call
10 Expr[] inputExprs = extractParamValues(method, call, inputs)
11 Expr[][] inputValues = initialize()
12 for inputExpr ∈ inputExprs do

//Recursive call for each input
13 inputValues.add(recoverExpr(inputExpr,

inputExpr.method()))
14 end

//Replacing each input by the obtained values
15 Expr[] product = replaceInput(value, inputs, inputValues)
16 for e ∈ product do
17 result.add(e)
18 end
19 end
20 end
21 end
22 return result

Algorithm 2: Algorithm for recovering the string values of a given Java expression.

(2) Let value = ‘select * from x order by y ’; the process is slightly differ-
ent. In this case there are two input parameters: x and y . The result for x is the same
as above (‘Provider’), but y , reduced to columnN ame, may correspond to two
different values: ‘provider_id’ and ‘provider_name’. The algorithm returns two
possible values (line 15): ‘select * from Provider order by provider_id’
and ‘select * from Provider order by provider_name’.

The final result of the algorithm will be 3 different string values for the sql
expression: ‘select * from Provider’, ‘select * from Provider order by
provider_id’, and ‘select * from Provider order by provider_name’.
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Procedure getLocalValues(Expr expr, Method method)
Input: A Java expression representing a String value and the Java method where

the expression is located
Output: All the possible values of the given expression by only exploring the

given local method.
Procedure getInputParams(Method method, Expr expr)
Input: A Java method declaration and a Java expression.
Output: The input parameters of the given method which are part of the given

expression
Example:

- method = public static void printCustomer(Connection con, Integer id)
- expr = "select * from Customer where cust_i d = " + id
- res = [id]

Procedure callGraph(Method method)
Input: A Java method declaration.
Output: The Java expressions invoking the given method.
Procedure extractParamValues(Method method, MethodCallExpr mce,

Variable[] inputs)
Input: A Java method declaration, a Java expression invoking the given method

and a set of input parameters of the given method.
Output: The corresponding value of each parameter.
Example:

- method = public static void printCustomer(Connection con, Integer id)
- mce = printCustomer(myConnection, 201456)
- inputs = [id]
- res = [201456]

Procedure replaceInput(Expr expr, Variable[] inputs, Expr[][] inputValues)
Input: A Java expression, a list of variables used by the given expression, the

possible values of each variable
Output: Replacing the variables part of the given expression by their

corresponding values
Example:

- expr = "select * from Customer where f i r st_name = " + firstName + " and
l ast_name = " + lastName
- inputs = [firstName, lastName]
- inputValues = [ [’James’, ’John’], [’Smith’] ]
- res = [ select * from Customer where f i r st_name = ’James’ and l ast_name

= ’Smith’, select * from Customer where f i r st_name = ’John’ and l ast_name
= ’Smith’]

Algorithm 3: Description of the procedures used in Algorithm 2

SQL Parsing. In the end of the process, the SQL parsing phase will generate an
AST for each extracted query and then extract the set of accessed objects. Figure 4.3
shows the corresponding AST constructed by parsing the query select * from
Provider order by provider_id. The Provider table and its provider_id
column are detected as the accessed objects. The analysis of the Provider.* field
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SELECT

Identifier

name: *

Identifier

name: Provider

Columns From

Identifier

name: provider_id

Order by

Figure 4.3: The corresponding AST constructed by parsing the query select *
from Provider order by provider_id.

1 Book getBook() {
2 String code = System.console().readLine(); //getting user input through the console
3 String sql = "select * from book where code = " + code;
4 rs = st.executeQuery(sql);
5 ...
6 }

Listing 4.2: Example of SQL query construction using an input value given by the
application user.

will be resolved as the set of columns of the Provider table. During the extraction
of the accessed objects, our approach distinguishes the explicitly and implicitly
accessed columns. In our example, the provider_id column is explicitly accessed,
while every other column of the Provider table is implicitly accessed. The impor-
tance of this distinction will be further discussed and illustrated in Chapter 5, when
supporting program-database co-evolution.

The success of the SQL query extraction process relies on the resolution of
the values of string variables, for which we trace back string variables following
the control flow and call graph of the application. When a variable cannot be
resolved statically, the query cannot be fully extracted and contains unresolved
query fragments. However, we design our SQL parsing phase to be robust and
able to handle unresolved query fragments. For this step, it simply means that we
use a special string ‘@@null@@’ as a placeholder for such fragments. Listing 4.2
shows a typical method that constructs a SQL query to get a book in a database
according to a code given by the application user. Since the code value introduced by
the user through the console cannot be statically resolved, ‘select * from book
where code = @@null@@’ is the query string that we can extract from this method.
Figure 4.4 shows the corresponding AST constructed by parsing the query.
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SELECT

Identifier

name: *

Identifier

name: book

Columns From

Binary
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fragment

Identifier

name: code

Left Right

Where

Figure 4.4: Example of AST containing an unresolved query fragment.
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Figure 4.5: Overview of the Hibernate analysis.

4.2.3 Hibernate Analysis

Similarly to the JDBC API, Hibernate provides the developer multiple database
access/query mechanisms. The aim of the Hibernate analysis is to identify the
source code locations accessing the database through Hibernate. While it partly
relies on the JDBC analysis and its algorithm of string value recovery, the Hibernate
analysis is more sophisticated due to the ORM complexity. Figure 4.5 depicts the
overview of our Hibernate analysis.

Like the JDBC API, Hibernate also proposes different Java methods to execute
either native SQL queries or HQL queries. The extraction process of those queries
is similar to the JDBC analysis process (Algorithm 2). However, the HQL parsing
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from Order o where o.uuid = 1

select order0_.order_id as order1_54_, order0_.uuid as uuid54_, order0_.instructions as instruct3_54_, 
order0_.date_activated as date4_54_, order0_.auto_expire_date as auto5_54_, order0_.date_stopped as 
date6_54_, order0_.accession_number as accession7_54_, order0_.date_created as date8_54_, 
order0_.voided as voided54_, order0_.date_voided as date10_54_, order0_.void_reason as void11_54_, 
order0_.order_reason_non_coded as order12_54_, order0_.order_number as order13_54_, 
order0_.comment_to_fulfiller as comment14_54_, order0_.scheduled_date as scheduled15_54_, 
order0_.urgency as urgency54_, order0_.order_action as order17_54_, order0_.care_setting as care18_54_, 
order0_.order_type_id as order19_54_, order0_.previous_order_id as previous20_54_, order0_.concept_id 
as concept21_54_, order0_.encounter_id as encounter22_54_, order0_.patient_id as patient23_54_, 
order0_.order_reason as order24_54_, order0_.orderer as orderer54_, order0_.voided_by as voided26_54_, 
order0_.creator as creator54_, order0_1_.dose as dose55_, order0_1_.dose_units as dose3_55_, 
order0_1_.frequency as frequency55_, order0_1_.as_needed as as5_55_, order0_1_.as_needed_condition 
as as6_55_, order0_1_.quantity as quantity55_, order0_1_.quantity_units as quantity8_55_, 
order0_1_.drug_inventory_id as drug9_55_, order0_1_.dosing_type as dosing10_55_, order0_1_.num_refills 
as num11_55_, order0_1_.dosing_instructions as dosing12_55_, order0_1_.duration as duration55_, 
order0_1_.duration_units as duration14_55_, order0_1_.route as route55_, order0_1_.brand_name as 
brand16_55_, order0_1_.dispense_as_written as dispense17_55_, order0_2_.specimen_source as 
specimen2_56_, order0_2_.laterality as laterality56_, order0_2_.clinical_history as clinical4_56_, 
order0_2_.number_of_repeats as number5_56_, order0_2_.frequency as frequency56_, case when 
order0_1_.order_id is not null then 1 when order0_2_.order_id is not null then 2 when order0_.order_id is 
not null then 0 end as clazz_ from orders order0_ left outer join drug_order order0_1_ on 
order0_.order_id=order0_1_.order_id left outer join test_order order0_2_ on 
order0_.order_id=order0_2_.order_id where order0_.uuid=1

Figure 4.6: Example of HQL query and its translated SQL form.

process is slightly different from the parsing phase of the JDBC analysis. Indeed,
at this point we cannot just extract a SQL query string. Moreover, translating a
HQL query into its corresponding SQL form is not trivial. Figure 4.6 shows an
example of a HQL query and its translated SQL form. Therefore, we implemented a
feature to be able to translate a HQL query into the corresponding SQL query. This
translation is processed by invoking the internal HQL to SQL compiler of Hibernate
(org.hibernate.hql.QueryTranslator) with the same context that would be
used for execution. Once we obtained the corresponding translated SQL query, we
are able to parse it and extract the involved objects.

Furthermore, as previously described, Hibernate also offers a set of methods
operating on instances of mapped entity classes, e.g., Listing 4.3. This way of ac-
cessing the database cannot be reduced to a mere string recovery process. Instead,
the purpose is to determine the Java class of the object. The proposed solution
consists in firstly determining the entity class(es) of the input object and then, de-
tecting the corresponding mapped database objects. This last phase analyzes the
Hibernate mapping files of the system. These mapping files instruct Hibernate
how to map the defined class or classes to the database tables. We did not present
our algorithm allowing to determine the entity class of an input Java object be-
cause it uses the same logic (but simplified) that Algorithm 2. Instead, we illustrate
the use of that algorithm on Listing 4.3. The database access detection detects
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1 private Session session;
2 ...
3 public void saveCustomer(Customer myCustomer) {
4 saveObject(myCustomer);
5 }
6

7 public void saveObject(Object o) {
8 session.save(o);
9 }

Listing 4.3: Hibernate operation on a mapped entity class instance. Insertion of a
new customer.
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Figure 4.7: Overview of the JPA analysis.

session.save(o) as a database access. o is the expression to resolve and is located
in saveObject(Object o). o is identified as an input parameter of the method
saveOb j ect . Then, the algorithm explores the code to retrieve the expressions
invoking the saveOb j ect method (call graph extraction). Only one call expression
is returned, namely saveObject(myCustomer). Next, we recursively resolve the
myCustomer expression. myCustomer is also a parameter of the saveCustomer
method, however, there is no call expression for it (empty call graph). Thus, we
resolve myCustomer locally: by exploring the saveCustomermethod, we detect
that myCustomer is an instance of the Customer class. This step will, therefore,
return the Customer class as the only solution for the o expression. Finally, our
mapping solving process will detect the mapping between the Customer class and
its corresponding database table (e.g., table customer).

4.2.4 JPA Analysis

The JPA analysis, depicted in Figure 4.7, concentrates on the database accesses by
means of JPA. Like Hibernate, JPA proposes Java methods to execute either native
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1 EntityManagerFactory emf = ...;
2 EntityManager em = emf.createEntityManager();
3 em.getTransaction().begin();
4 Order order = ...;
5 em.persist(order);
6 em.getTransaction().commit();
7 em.close();

Listing 4.4: JPA operation on a mapped entity class instance. Creation and insertion
of a new order.

SQL queries or JPQL queries. The extraction process of those queries is similar to the
Hibernate analysis: we rebuild the query value by means of Algorithm 2 and then we
parse the JPQL query. The JPQL parsing process uses the same approach as for HQL,
by invoking the internal HQL to SQL compiler of Hibernate.

Like Hibernate, JPA also permits accessing the database by operating on Java
instances of mapped entity classes, e.g., Listing 4.4. We use the same approach
to address that problem. However, instead of using the Hibernate mapping files
for establishing the mapping between the entity classes and the database tables,
the mapping solving process will consider the JPA annotations which define this
mapping.

4.2.5 Process Output

The output of the full process is the set of the database accesses detected by our
static analysis as well as the code location of each access and the database tables
and columns involved in it. The code location of a given access is expressed by the
minimal program path necessary for creating and executing the database access.
The below example shows sample information gathered for a database access where
a SQL query is executed at line 124 in DatabaseUtil.java. The current method in
which the query execution occurs is called by CheckDrugOrderUnit.java at line
56. The database objects involved in this query are the drug_order table and units,
one of its columns.

JDBC access:
,→’SELECT DISTINCT units FROM drug_order WHERE units is NOT
NULL’

Program path:
,→ [CheckDrugOrderUnit.java, line=56] → [DatabaseUtil.java, line=124]

Database schema objects:
,→ Database Tables: [ drug_order ]
,→ Database Columns: [ drug_order.units ]
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System Description LOC Tables Columns

OSCAR Medical record system 2 054 940 480 13 822
OpenMRS Medical record system 301 232 88 951
Broadleaf E-commerce framework 254 027 179 965

Table 4.1: Size metrics of the systems

4.3 Evaluation

In this Section, we evaluate our approach on three real-life systems, namely OSCAR1,
OpenMRS2 and Broadleaf3. The detailed results of this evaluation are available as
an online appendix4.

4.3.1 Evaluation Environment

Table 4.1 presents an overview of the main characteristics of the target systems.
OSCAR combines JDBC, Hibernate and JPA to access the database. OpenMRS uses a
MySQL database accessed via Hibernate and dynamic SQL (JDBC). Broadleaf uses a
relational database accessed via JPA.

Table 4.2 contains the results of the process of identifying database accesses
applied to the three systems. For each system and technology supported, it presents
the total number of database accesses detected by our approach.

System Database Accesses
JDBC Hib JPA

OSCAR 123 661 727 31 729
OpenMRS 77 687 0
Broadleaf 0 0 930

Table 4.2: Number of database accesses per technology

Figure 4.8 shows the set of tables and columns accessed by the different tech-
nologies. In the OSCAR system, we notice that JDBC remains the most widely used
technology regarding the number of different columns accessed (10,350 columns
accessed from 123,661 accesses). Concerning OpenMRS, the biggest database part is
accessed by Hibernate (713 columns for 687 accesses) whereas JPA is the only used
mechanism in Broadleaf (431 columns for 930 accesses).

Table 4.3 depicts, for each system, the number of recursive calls needed for
completely recovering a code location accessing the database, i.e., the number of
recursive calls in Algorithm 2. In OSCAR, one can notice that 4 recursive calls are

1Checked out from GitHub at August 26, 2014.
2Checked out from GitHub at November 6, 2014.
3Checked out from GitHub at February 20, 2015.
4https://staff.info.unamur.be/lme/CAISE16/
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4.3.1. Evaluation Environment

System JDBC Hib JPA
x̄ max x̄ max x̄ max

OSCAR 4 8 1.5 3 3.8 7
OpenMRS 1.2 3 1 2 - -
Broadleaf - - - - 1 1

Table 4.3: Number of recursive calls in Algorithm 2 required to completely recon-
struct database accesses.
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Figure 4.8: Distribution of tables and columns by access technology
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required, on average, to fully reconstruct a database access via JDBC, while the most
complex detected accesses require 8 recursive calls. By comparing with the other
systems in Table 4.3, we note that OSCAR is the most complex, recursive calls being
often necessary to recover the database accesses. In contrast, one can observe that
in OpenMRS and Broadleaf, most database accesses are built and executed within
the same method.

4.3.2 Successfully extracted queries

The oracle. To evaluate the effectiveness of our approach in extracting database
accesses, we assess whether we can identify most of the database accesses and also
the noise of the technique. First we need to have a ground truth, i.e., the actual
set of queries that are sent to the database with their corresponding source code
locations. Once we have this set of queries, we can compare them to our extracted
set of queries. However, the availability of a complete ground truth is not a realistic
working assumption in the context of large legacy systems.

The oracle that we used for assessing our approach is the set of unit tests of each
software system. That is, we systematically collected all the database accesses (JDBC,
Hibernate and JPA) produced by the execution of the test suites. We gathered this
query set by analyzing trace logs of the execution of the unit tests of each system. To
do so, we used our modified version of log4jdbc5 to collect trace logs containing the
exact string values of all of the queries sent to the database and their corresponding
stack traces.

System Java Files LOC Number of Test Runs

OSCAR 361 49 086 1 311
OpenMRS 352 76 960 3 258
Broadleaf 109 17 633 255

Table 4.4: Unit tests of the systems under question.

System Technology Covered Covered
Classes Locations

OSCAR JDBC 1.05% 0.28%
Hibernate/JPA 65.00% 56.79%

OpenMRS JDBC 16.00% 13.56%
Hibernate/JPA 69.57% 58.16%

Broadleaf JDBC - -
Hibernate/JPA 33.96% 19.10%

Table 4.5: Coverage values of the unit tests

5http://code.google.com/p/log4jdbc/
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Table 4.4 presents statistics about the unit tests of the systems under question.
We count the number of test runs reported by the build system and show the total
lines of Java code in the testing directories. In addition to the test classes, there
are functional tests (e.g., Broadleaf uses Groovy tests), resulting that the number
of executed test cases are larger than the number of test classes. In general, all
the systems are well tested with unit tests, and developers do not just test core
functionality of their systems, but the testing of DAO classes is also one of their
main goals. All the systems have test databases and hundreds of test cases for
testing database usage. Thus, it is reasonable to consider as oracle the data accesses
collected through the execution of the unit tests.

The queries that we identify with the help of log4jdbc are filtered based on
their stack traces, in order to distinguish between queries sent to the database
directly through JDBC or Hibernate. Also, this filtering keeps queries generated by
Hibernate explicitly for HQL or JPA queries and filters those implicit queries, which
are generated for caching or lazy data fetching purposes, for instance.

Table 4.5 shows what percentages of the classes and locations (that we extracted
as data accesses) are covered by the unit tests. For OSCAR and OpenMRS, the two
largest systems that we analyzed, these coverage values are, respectively, 65% and
69.57% for the classes where we found Hibernate or JPA queries. The coverage value
of JDBC data accesses is, however, quite low for all systems. The reason for this is
that these systems implement main features using ORM technologies, and it mostly
happens out of the scope of the main features where they use JDBC to accesses the
database, e.g., in utility classes for upgrading the database, or in classes to prepare
test databases. These parts of the code are usually not tested by unit tests, resulting
in low coverage for our analysis.

Percentages of successfully extracted queries. Conceptually, the number of pos-
sible queries is infinite (i.e., when a part of a query depends on user input, its
value could be anything). However, to assess if we were able to identify most of
the database accesses or not, we calculate the percentages of successfully extracted
and unextracted queries. We consider a query of the oracle (a query logged in the
execution traces of the unit tests) successfully extracted if we could also extract it from
the source code. Otherwise, we consider it unextracted. In other words, successfully
extracted queries are the true positive queries, while the unextracted ones are the
false negatives. To determine if a query in the oracle was successfully extracted or
not, we compare the stack trace of all of these queries to the ‘program paths’ (see
Section 4.2.5) of the extracted queries. Moreover, we compare the string values of
the SQL queries.

Table 4.6 shows the percentages of the successfully extracted queries. For assess-
ing the JDBC analysis on OSCAR, we found 2,038 queries in the trace logs, among
which our approach successfully extracts 1,681. Regarding the Hibernate/JPA anal-
ysis, we identified 892 queries out of 1,558. In general, we identified 71.5% of the
queries. In the case of OpenMRS, for the JDBC analysis, we identified 31 queries out
of 41, while we identified 268 Hibernate/JPA accesses out of 322. In total, we identify
82.4% of the queries. For Broadleaf, the percentage of successfully extracted queries
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System Technologies Total
JDBC HIB/JPA

OSCAR 1681/2038 892/1558 71,5%
OpenMRS 31/41 268/322 82,4%
Broadleaf - 94/95 99%

Table 4.6: Percentage of successfully extracted queries for each system

System Technologies Total
JDBC HIB/JPA

OSCAR 14/17 656/689 94.9%
OpenMRS 8/8 86/99 87.9%
Broadleaf - 29/29 100%

Table 4.7: Percentage of valid queries for each system

is 99% (94 JPA accesses out of 95).

Percentage of valid queries. It is possible that we extract an incorrect query that will
never be executed by the program. It can happen when our static technique fails to
deal with constructs in the code which would require additional information that we
cannot extract statically, e.g., evaluating conditional statements (see Section 4.3.3).
We consider that these queries are invalid and represent the noise of our approach.
In other words, these queries are the false positive queries reported by our technique.

We limit the assessment to those database access points that are covered by the
unit tests. If the tests cover an access point, we can make the assumption that the
possibly valid queries on that location were sent to the database and traced by our
dynamic analysis. All the queries that were reported for these locations, and are not
in the oracle, are thus considered as invalid (false positives).

Results are presented in Table 4.7. In the case of OSCAR, with the JDBC analysis
we obtain 14 valid out of 17 queries and 656 valid out of 689 for the Hibernate/JPA
analysis. The percentage of the valid queries value is 94.9%. For OpenMRS, we
obtain a percentage of 87.9% with 8 true positive out of 8 for the JDBC analysis and
86 true positives out of 99 for the Hibernate/JPA analysis. Finally, for Broadleaf there
are no invalid queries (29 true positives out of 29).

4.3.3 Limitations

As we have seen, our approach reached good results when applied to real-life large
Java systems. However, we identified some limitations of our approach that are
mainly due to its static nature. Below, we give an overview of those limitations that
may cause failures in the automated extraction of (valid) SQL queries.
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1 Session session = ...;
2 ...
3 StringBuilder sb = new StringBuilder();
4 sb.append(" select distinct patient.id from DrugOrder where voided = false and patient.

voided = false ");
5 if (drugList != null) {
6 sb.append(" and drug.id in (:drugIdList) ");
7 }
8 if (startDateFrom != null && startDateTo != null) {
9 sb.append(" and dateActivated between :startDateFrom and :startDateTo ");

10 }
11 ...
12 Query query = session.createQuery(sb.toString());

Listing 4.5: HQL query construction by means of a StringBuilder object.

String manipulation classes. The standard Java API provides developers with classes
to manipulate String objects, such as StringBuilder and StringBuffer. The
main operations of those classes are the append and insert methods, which are
overloaded so as to accept data of any type. In particular, a StringBuilder/String-
Buffer may be used for creating a database access (e.g., a SQL query). The current
version of our analysis does not handle the use of those classes in the string value
recovery process. This is one reason for some unsuccessfully extracted queries. As
we manually investigated it for the OpenMRS system, among the 54 Hibernate/JPA
accesses not extracted by our parser (see Table 4.6), 49 are due to the use of String-
Builder objects for creating the query value. This obviously affects the percentage of
successfully extracted queries. Listing 4.5 shows an encountered example of the use
of StringBuilder to create a HQL query6.

User-given inputs. Similarly, executed SQL queries sometimes include input values
given by the application users. This is the case in highly dynamic applications that
allow users to query the database by selecting columns and/or tables in the user
interface. In such a situation, which we did not encounter in our evaluation envi-
ronment, our approach can still detect the database access location but the static
recovery of the associated SQL queries may be incomplete.

Boolean conditions. Another limitation we observed relates to the conditions in
if-then, while, for, and case statements. Our parser is designed to rebuild all the possi-
ble string values for the SQL query. Thus, it considers all the possible program paths.
Since our static analyzer is unable to resolve a boolean condition (a dynamic analy-
sis would be preferable), these cases generate some noise (false positive queries).
In the three subjects systems, a total of 12 invalid queries were extracted by our
approach due to boolean conditions. Listing 4.6 depicts an encountered example
of invalid extracted HQL query due to dependent boolean conditions. From this
example, four HQL queries were recovered:

(a) select concept from Concept as concept left join concept.names as names
where names.conceptNameType = ’FULLY_SPECIFIED’

6http://bit.ly/1XNeL4e
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(b) from Concept as concept
(c) select concept from Concept as concept
(d) from Concept as concept left join concept.names as names

where names.conceptNameType = ’FULLY_SPECIFIED’

However, the two last queries are invalid since the two boolean conditions (lines 3
and 6) are dependent7.

1 Session session = ...;
2 String hql = "";
3 if (isNameField)
4 hql += "select concept";
5 hql += " from Concept as concept";
6 if (isNameField)
7 hql += " left join concept.names as names where names.conceptNameType = ’

FULLY_SPECIFIED’";
8 Query query = session.createQuery(hql);
9 return (List<Concept>) query.list();

Listing 4.6: HQL query construction - dependency between two if statements.

4.4 Concluding Remarks

In this Chapter, we presented a static program analysis technique allowing us to
automatically detect and recover database accesses within the source code. This
technique is specifically designed for Java systems (the most popular program-
ming language today [TIOBE Programming Community Index, 2017]). This analysis
approach permits the automatic recovery of SQL queries which are dynamically
constructed in the code or which are partially/fully hidden because generated by the
ORM layer. In particular, our approach targets three of the most popular Java access
technologies, i.e., JDBC, Hibernate and JPA. We secondly conducted an evaluation
of our approach based on three real-life large systems and reached good results. We
also identified some limitations of our approach (mainly due to its static nature).

The automated detection and recovery of the database usage in the source code
is a first essential step towards the implementation of an approach supporting the
co-evolution between the programs and the database. Therefore, Chapter 5 is built
on the use of our analysis approach.

Roadmap

In this chapter, we have presented a static analysis approach that automatically
detects and recovers database accesses from the source code; this approach is
specifically designed for Java systems and targets at three main database access
technologies, i.e., JDBC, Hibernate and JPA.

In the next chapter (Chapter 5), we reuse this static analysis method to build a
historical analysis approach that allows us to analyze, at a fine-grained level, how
the program source code and the database schema have co-evolved over time.

7http://bit.ly/1Y0TJAT
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4.4. Concluding Remarks

Later, in Chapter 8, we present direct applications of this analysis approach to
different fields.
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This chaptera builds on the previous chapter. Based on the static analysis approach,
we present a historical analysis approach that allows us to analyze, at a fine-grained
level, how the program source code and the database schema have co-evolved over
time. We then motivate the benefits of this historical approach on real-life systems.

aAn extended version of this chapter appeared in the book Software Technology : 10 Years
of Innovation, published by John Wiley & Sons in 2016 [Meurice et al., 2016a].

5.1 Introduction

In previous chapters, we observed that the communication between the program
and the database can be ensured by several kinds of database access technologies.
For instance, ORM middleware provides programmers an external, object-oriented
view on the database schema. Both schemas can evolve asynchronously, each at
their own pace, often under the responsibility of independent teams. Therefore,
severe inconsistencies may then progressively emerge due to undisciplined evolu-
tion processes. In addition, the high level of dynamicity of current database access
technologies makes it hard for a programmer to figure out which SQL queries will
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Figure 5.1: The overview of our approach. Step A : the extraction; Step B : the
historization.

be executed at a given location of the program source code, or which source code
methods actually access a given database table or column. Things may become
even worse when multiple database access technologies co-exist within the same
software system; co-evolving the database and the program may then require to
master several different languages and technologies.

In this context, this Chapter proposes a historical approach allowing us to un-
derstand, at a fine-grained level, how systems evolve over time, how the database
and code co-evolve and how several technologies may co-exist into the same system.
In particular, our approach aims to compute a historical database gathering infor-
mation about the evolution of several system artefacts, namely the source code, the
database schema, the database usage and the ORM usage. Querying this historical
database will allow us to understand how the program and database have co-evolved
over time and how this evolution has led to the current system state.

5.2 Approach

The objective of our automatic approach is to compute a historical dataset gathering
information about the evolution of several system artefacts, namely the source
code, the database schema, the database usage and the ORM usage. Our approach,
depicted in Figure 5.1, comprises two steps: the extraction and historization steps.
The extraction step exploits the system’s history (i.e., the versioning repository) in
order to extract information about the evolution of (1) the database schema, (2)
the database usage and (3) the ORM usage. Finally, the historization step historizes
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Figure 5.2: Phase A of our approach depicted in Figure 5.1: the Extraction.

all this information to derive a historical dataset. Querying the resulting historical
dataset will allow us to understand how the program and database schema co-evolve
over time.

In particular, our approach focuses on the history analysis of large Java systems.
The choice for Java is because it is the most popular programming language to-
day according to different sources such as the TIOBE Programming Community
index [TIOBE Programming Community Index, 2017]. Our approach currently fo-
cuses on three of the most popular Java technologies (according to [Goeminne and
Mens, 2015]), namely JDBC, Hibernate, and JPA.

5.2.1 Extraction

The extraction phase, depicted in Figure 5.2, exploits the versioning system in order
to separately analyze each successive system version. This analysis process is com-
posed of 4 steps: the database schema extraction, the database access extraction,
the Hibernate schema extraction and the JPA schema extraction.

Database Schema Extraction

This phase aims to extract the database schema at a given system version. We
previously addressed this problem in Section 3.2.

Database Access Extraction

This phase aims to detect and recover the SQL queries and ORM accesses within the
source code. We previously addressed this problem in Section 4.2.

As output of this step, we have a set of recovered database accesses and useful
information about them, as described in Section 4.2.5; for each access, we know the
accurate code location and the database tables and columns involved in it. The code
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1 <!-- The document root. -->
2 <!ELEMENT hibernate-mapping (
3 ...
4 class*
5 )>
6

7 <!-- Root of an entity class hierarchy. Entities have their own tables. -->
8 <!ELEMENT class (
9 (id|composite-id),

10 discriminator?,
11 (property|component)*,
12 join*,
13 subclass*,
14 ...
15 )>
16 <!ATTLIST class name CDATA #REQUIRED>
17 <!ATTLIST class table CDATA #IMPLIED>
18 <!ATTLIST class schema CDATA #IMPLIED>

Listing 5.1: DTD schema sample of any Hibernate configuration file.

1 <hibernate-mapping>
2 <class name="Customer" table="customer" schema="finance" />
3 </hibernate-mapping>

Listing 5.2: Example of persistence class declaration in the Hibernate mapping
document.

location of a given access is expressed by the minimal program path necessary for
creating and executing the database access.

Hibernate Schema Extraction

Hibernate mappings are usually defined in an XML document. The mapping lan-
guage is Java-centric, meaning that mappings are constructed around persistent
class declarations and not table declarations. The mapping document is structured
according to the DTD schema which is specified in the Hibernate documentation1.
Listing 5.1 shows a fragment of this DTD schema.

The Hibernate schema extraction phase targets at analyzing this mapping docu-
ment in order to automatically recover the defined mappings between source code
instances and database elements. The objective is to detect the code locations where
mappings are defined and to extract the Hibernate schema. The latter is made of
tables and columns mapped to the code via Hibernate, and thus represents, at least,
a sub-schema of the actual database schema.

Entity class. Developers can declare a persistent entity class mapped to a database
table by using the class element. Listing 5.2 depicts an example of mapping be-
tween the Customer class and the customer table from the finance schema.

1The DTD schema can be found in its entire form at http://hibernate.org/dtd/.
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1 <hibernate-mapping>
2 <class name="Customer" table="customer" schema="finance">
3 <property name="city" column="city" />
4 <property name="country" column="country" />
5 </class>
6 </hibernate-mapping>

Listing 5.3: Example of entity property declaration in the Hibernate mapping
document.

1 public class Customer {
2 private String city;
3 private String country;
4 ...
5 }

Listing 5.4: Java class concerned by the mapping defined in Listing 5.3.

customer

city

country

Figure 5.3: Database table concerned by the mapping defined in Listing 5.3 and 5.6.

Entity properties. The property element permits developers to declare a mapping
between a class attribute and a database column. Listing 5.3 shows an example
of mappings between the customer.city and customer.country columns, and
respectively, the Customer.city and Customer.country attributes. Listing 5.4
and Figure 5.3 depict, respectively, the Java class and the database table that are
mapped in this use case.

In addition, Hibernate permits to map a single entity to multiple tables. The
join element allows developers to declare a secondary table in a mapping. In List-
ing 5.5, both customer and address tables are mapped to the Customer class. Both
tables are joined by address.customer_id, the foreign key column. Listing 5.4
(remaining unchanged) and Figure 5.4 depict, respectively, the Java class and the
database tables that are mapped in this use case.

Hibernate also allows the mapping between a class attribute and a group of
database columns. Indeed, the component element maps properties of a child ob-
ject to columns of the table of a parent class. Components can, in turn, declare their
own properties and components. Listing 5.6 depicts an example of component;
the Address.city and Address.country attributes are, respectively, mapped to
the customer.city and customer.country columns. The Customer.address
attribute is an instance of the Address class. Listing 5.7 and Figure 5.3 depict, re-
spectively, the Java class and the database table that are mapped in this use case.
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1 <hibernate-mapping>
2 <class name="Customer" table="customer" schema="finance">
3 <join table="address">
4 <key column="customer_id" />
5 <property name="city" column="city" />
6 <property name="country" column="country" />
7 </join>
8 </class>

Listing 5.5: Example of entity join table declaration in the Hibernate mapping
document.

customer

id

id: id

address

customer_id

city

country

ref: customer_id

acc 

Figure 5.4: Database tables concerned by the mapping defined in Listing 5.5.

1 <hibernate-mapping>
2 <class name="Customer" table="customer" schema="finance">
3 <component name="address" class="Address">
4 <property name="city" column="city" />
5 <property name="country" column="country" />
6 </component>
7 </class>
8 </hibernate-mapping>

Listing 5.6: Example of entity component declaration in the Hibernate mapping
document.

Entity identifier. Mapped classes must declare the primary key column of the
database table. The id element defines the mapping from that property to the
primary key column.

1 public class Customer {
2 private Address address;
3 ...
4 }
5

6 public class Address {
7 private String city;
8 private String country;
9 }

Listing 5.7: Java class concerned by the mapping defined in Listing 5.6.
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1 <hibernate-mapping>
2 <class name="Customer" table="customer" schema="finance">
3 <id name="customer_id" type="int" column="id" />
4 </class>
5 </hibernate-mapping>

Listing 5.8: Example of entity identifier declaration in the Hibernate mapping
document.

1 public class Customer {
2 private int customer_id;
3 ...
4 }

Listing 5.9: Java class concerned by the mapping defined in Listing 5.8.

customer

id

id: id

Figure 5.5: Database table concerned by the mapping defined in Listing 5.8.

Listing 5.8 depicts a mapping between the customer.customer_id primary key
column and the Customer.id class attribute. Listing 5.9 and Figure 5.5 depict,
respectively, the Java class and the database table that are mapped in this use case.

However, a table with a composite key can also be mapped with multiple prop-
erties of the class as identifier properties. The composite-id element accepts
property mappings as child elements. Listing 5.10 depicts an example of composite
identifier composed of the firstName and lastName columns, which are respec-
tively mapped to the first_name and last_name class attributes. Listing 5.11
and Figure 5.6 depict, respectively, the Java classes and the database table that are
mapped in this use case.

Entity inheritance. Polymorphic persistence is also allowed and requires the dec-

1 <hibernate-mapping>
2 <class name="Customer" table="customer" schema="finance">
3 <composite-id name="id" class="CustomerId">
4 <property name="first_name" column="firstName" />
5 <property name="last_name" column="lastName" />
6 </composite-id>
7 </class>
8 </hibernate-mapping>

Listing 5.10: Example of composite identifier declaration in the Hibernate mapping
document.
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1 public class Customer {
2 private CustomerId id;
3 ...
4 }
5

6 public class CustomerId {
7 private String first_name;
8 private String last_name;
9 }

Listing 5.11: Java classes concerned by the mapping defined in Listing 5.10.

customer

firstName

lastName

id: firstName

lastName

Figure 5.6: Database table concerned by the mapping defined in Listing 5.10.

1 <hibernate-mapping>
2 <class name="Payment" table="PAYMENT">
3 ...
4 <discriminator column="PAYMENT_TYPE" type="string"/>
5 <subclass name="CreditCardPayment" discriminator-value="CREDIT">
6 ...
7 </subclass>
8 <subclass name="CashPayment" discriminator-value="CASH">
9 ...

10 </subclass>
11 <subclass name="ChequePayment" discriminator-value="CHEQUE">
12 ...
13 </subclass>
14 </class>
15 </hibernate-mapping>

Listing 5.12: Example of entity inheritance declaration in the Hibernate mapping
document.

laration of each subclass of the root persistent class. For instance, the subclass
declaration is used to establish a table-per-class-hierarchy mapping strategy. List-
ing 5.12 illustrates an example of subclasses defined in Hibernate. The root class is
mapped to the PAYMENT table while each of its subclass corresponds to a particular
payment mode.

In addition, the discriminator element is required to declare a discriminator
column of the table. The discriminator column contains marker values that tell
the persistence layer what subclass to instantiate for a particular row. In our case,
the PAYMENT_TYPE column is restricted to a set of predefined discriminator values
which are used to determine the selected payment mode. Listing 5.13 and Figure 5.7
depict, respectively, the Java classes and the database table that are mapped in this
use case.
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1 public class Payment{
2 ...
3 }
4

5 public class CashPayment extends Payment {
6 ...
7 }
8

9 public class ChequePayment extends Payment {
10 ...
11 }

Listing 5.13: Java classes concerned by the mapping defined in Listing 5.12.

PAYMENT

PAYMENT_TYPE

Figure 5.7: Database table concerned by the mapping defined in Listing 5.12.

As output of the Hibernate schema extraction, we obtain a set of tables and
columns concerned by Hibernate mappings; for each table/column, we know the
code location(s) where a mapping involving the given object is declared.

JPA Schema Extraction

JPA offers similar mechanisms to establish mappings between database elements
and code instances. The mappings are defined through annotations instead of
hbm.xml files. Those annotations, which are specified in the JPA documentation2,
are declared in the source code itself.

The JPA schema extraction aims at analyzing the JPA annotations in order to
automatically detect and recover the database-code mappings. Similarly to the
Hibernate schema extraction, the objective is to detect code locations where JPA
mappings are defined and to extract the JPA schema. The latter represents, at least,
a sub-schema of the actual database schema.

Entity class. Every persistent entity class is declared using the @Entity annotation,
at the class level. In addition, the @Table annotation can be used to determine the
mapped table. Listing 5.14 illustrates the declaration of the mapping between the
customer table and the Customer class, through JPA annotations.

Entity properties. Developers can declare entity properties, i.e., mappings between
a database column and a class attribute, by use of the @Column annotation. List-
ing 5.15 shows an example of entity property declaration. Figure 5.3 depicts the table
concerned by this use case.

JPA also permits to map a single entity to multiple tables. A secondary table
can be declared by use of the @SecondaryTable annotation. In Listing 5.16, both

2The JPA specifications can be found at http://www.oracle.com/technetwork/java/javaee/
documentation/index.html.
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1 @Entity
2 @Table(name="customer")
3 public class Customer {
4 ...
5 }

Listing 5.14: Example of persistent class declaration through JPA annotation.

1 @Entity
2 @Table(name="customer")
3 public class Customer {
4 @Column
5 private String city;
6

7 @Column
8 private String country;
9 ...

10 }

Listing 5.15: Example of properties declaration through JPA annotation.

1 @Entity
2 @Table(name = "customer")
3 @SecondaryTable(name = "address", pkJoinColumns = @PrimaryKeyJoinColumn(name = "

customer_id"))
4 public class Customer {
5 ...
6 @Column(table = "address")
7 private String city;
8

9 @Column(table = "address")
10 private String country;
11 ...
12 }

Listing 5.16: Example of secondary table declaration through JPA annotation.

customer and address tables are mapped to the Customer class. Both tables are
joined by address.customer_id, the foreign key column. Figure 5.4 depicts the
tables concerned by this use case.

It is also possible to declare an embedded component inside an entity. Compo-
nent classes have to be annotated with the @Embeddable annotation. Listing 5.17
shows an embedded component declaration. Figure 5.3 depicts the table concerned
by this use case.

Entity identifier. The @Id annotation declares the identifier property of an entity.
Listing 5.18 depicts the identifier declaration within the Customer persistent class.
Figure 5.5 depicts the table concerned by this use case.

In case of composite identifier, the @EmbeddedId and @Embeddable annotations
are used to declare the identifier and to map it as a property in the entity (see List-
ing 5.19). Figure 5.6 depicts the table concerned by this use case.
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1 @Entity
2 @Table(name="customer")
3 public class Customer {
4 @Embedded
5 private Address address;
6 ...
7 }
8

9 @Embeddable
10 public class Address{
11 @Column
12 private String city;
13

14 @Column
15 private String country
16 ...
17 }

Listing 5.17: Example of embedded component declaration through JPA annotation.

1 @Entity
2 @Table(name="customer")
3 public class Customer {
4 @Id
5 @Column(name="id")
6 private int customer_id;
7 ...
8 }

Listing 5.18: Example of identifier declaration through JPA annotation.

1 @Entity
2 @Table(name="customer")
3 public class Customer {
4 @EmbeddedId
5 private CustomerId id;
6 ...
7 }
8

9 @Embeddable
10 public class CustomerId implements Serializable {
11 @Column(name="firstName")
12 private String first_name;
13

14 @Column(name="lastName")
15 private String last_name;
16 ...
17 }

Listing 5.19: Example of composite identifier declaration through JPA annotation.
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1 @Entity
2 @Inheritance(strategy=InheritanceType.SINGLE_TABLE)
3 @DiscriminatorColumn(name="PAYMENT_TYPE", discriminatorType=DiscriminatorType.STRING)
4 @Table(name="PAYMENT")
5 public class Payment { ... }
6

7 @Entity
8 @DiscriminatorValue("CREDIT")
9 public class CreditCardPayment extends Payment { ... }

10

11 @Entity
12 @DiscriminatorValue("CASH")
13 public class CashPayment extends Payment { ... }
14

15 @Entity
16 @DiscriminatorValue("CHEQUE")
17 public class ChequePayment extends Payment { ... }

Listing 5.20: Example of entity inheritance declaration through JPA annotation.

Entity inheritance. JPA also supports entity inheritance. Inheritance is declared at
the class level of the top level entity in the hierarchy by using the @Inheritance
annotation. Moreover, a discriminator column and its discriminator values can
be declared by using the @DiscriminatorColumn and @DiscriminatorValue an-
notations. Listing 5.20 depicts an example of inheritance declaration. Figure 5.7
depicts the table concerned by this use case.

The Hibernate schema extraction and the JPA schema extraction result in the
extraction of, respectively, the Hibernate and JPA schemas. Since both are very
similar, we merge them to obtain a unique condensed ORM schema. The latter
contains a set of tables and columns concerned by an ORM mapping. All those
tables/columns are annotated with meta-information about their mapping with the
source code. For each table, we know the mapped persistent class and its path in
the repository. For each column, we know the mapped class attribute and the class
path in the repository. In other words, the ORM schema allows us to know which
tables/columns are concerned by an ORM mapping, and for each mapped object,
the accurate source code location where the mapping is declared.

5.2.2 Historization

At this step, the extraction phase is applied to each successive system version - let
us denote n, the number of versions. In summary, for each system version, we
extracted the corresponding database schema, the set of database accesses and the
ORM schema.

The historization phase, depicted in Figure 5.8, consists of an incremental histor-
ization of the four inputs, namely (1) the n successive source code versions, (2) the
n successive database schema versions, (3) the n successive ORM schema versions
and (4) the n successive extracted sets of database accesses. This phase aims at com-
puting a historical dataset that gathers information pertaining to the source code
history, the database schema history, the ORM schema history and the database
access history.
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Figure 5.8: Phase B of our approach depicted in Figure 5.1: the Historization.

Source Code Historization

The source code historization focuses on the evolution of the source code over
time. The aim of this process is to obtain historical information pertaining to the
source code components. In particular, we focus on four types of source code
components. The source code repository contains a set of Java files; each of them
are identified by their file path in the repository and may contain one or several class
declaration(s). Developers may declare a class as an interface. They can also define
nested classes (a class within another class) characterized by a nested class path
(e.g., class1.class2.class3). Each class may declare (1) methods characterized
by their signature, and (2) attributes characterized by their name.

The source code historization computes historical data structured according to
the Entity-Relationship model depicted in Figure 5.9. Each source code component
is present in one or several system version(s); a system version, characterized by a
commit date and a committer/developer id, is the central element which assigns
a unique version identifier to the source code components, in order to facilitate
tracing their evolution over time. At a given version, each source code component
has its own definition at a particular position in the code, expressed as a couple of
coordinates: a begin line and column, and an end line and column.

Database Schema Historization

The database schema historization focuses on the evolution of the database schema
over time. The aim of this process is to obtain historical information pertaining to
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Figure 5.9: Entity-Relationship model of the source code historization.
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Figure 5.10: Entity-Relationship model of the database schema historization.

the database tables and columns. A database schema contains tables, identified by
their name. Each table owns several columns characterized by their name.

The database schema historization computes historical data structured accord-
ing to the Entity-Relationship model depicted in Figure 5.10. Each table/column is
present in one or several system versions. A column is characterized by its type (its
minimal and maximal cardinality, data type, length, decimal number and default
value). The type of a particular column can be modified between versions.
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Figure 5.11: Entity-Relationship model of the ORM schema historization.

ORM Schema Historization

The ORM schema historization focuses on the evolution of the ORM usage over
time. The aim of this process is to obtain historical information pertaining to the
Hibernate and JPA mappings defined within the source code. In particular, we focus
on table and column mappings. Each Hibernate/JPA mapping concerns a particular
database table (respectively column) and a class (respectively attribute).

The ORM schema historization computes historical data structured according
to the Entity-Relationship model depicted in Figure 5.11. Each ORM mapping is
present in one or several system version(s).

Database Access Historization

The database access historization focuses on the evolution of the database usage in
the source code over time. The aim of this process is to obtain historical information
pertaining to the database accesses. In particular, we focus on JDBC, Hibernate
and JPA accesses. A database access is present in one or several system versions. A
database access is characterized by its minimal program path (i.e., calls to particular
methods at a particular position in the code) necessary for creating and executing
the given access. In addition, the program path and its position in the code may
change between versions.

In particular, two kinds of database accesses are targeted, i.e., queries and CRUD
operations (see Section 1.5). A query is characterized by its original query value; in
case of HQL/JPQL query, the translated SQL form is another characteristic.

A query exists in one or several system versions and for each of those versions, it
accesses a particular set of tables and columns, either explicitly or implicitly (e.g.,
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Figure 5.12: Entity-Relationship model of the database access historization.

provider_name is only explicitly accessed column of Provider in select * from
Provider order by provider_name). A CRUD operation makes use of an ORM
mapping to access a database table.

The database access historization computes historical data structured according
to the Entity-Relationship model depicted in Figure 5.12.

Figure 5.13 shows the entire Entity-Relationship model obtained after historizing
the 4 system artefacts. Querying this model permits us to analyze the accurate
system state at any given version and to understand how the different artefacts have
evolved and co-evolved over time. In summary, this data model allows us to answer
what/where/when/who/how questions such as:sWhich tables/columns are accessed by a specific technology and where in the

code?sWhich tables/columns are mapped by a specific ORM technology and where
in the code?sWhen was a specific technology introduced in the project?sWhich was the impact of the introduction of a new technology in the project?sHow do several database access technologies co-exist?sWho is the most expert developer to achieve a particular evolution phase?sWhere are the error-prone database accesses which access removed/non-
existing database objects?sHow do source code and database schema co-evolve over time?s ...
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5.3 Tool Support

We implemented this approach and developed a tool which permits to automatically
compute the historical dataset, according to the ER model.

5.3.1 Extraction

To achieve this process, we implemented a set of analyzers in charge of executing the
extraction phase on a particular DISS artefact. The extraction phase is then executed
on each system version.

Database Schema Extraction

To implement the database schema extraction process, we reused the SQL code ex-
traction, physical extraction and physical schema enrichment processes, described
respectively in Sections 3.3.1, 3.3.2 and 3.3.3. As output, we obtain an enriched
version of the database schema.

Database Access Extraction

To implement the database access extraction process, we reused our static analyzer
allowing us to detect and recover JDBC, Hibernate and JPA accesses, as well as the
code location where each access is created and executed. The static analyzer is
detailed in Section 4.2.

Hibernate Schema Extraction

To achieve this task, we implemented an elaborated XML parser. The latter aims to
visit the Hibernate mapping document in order to find the Hibernate mapping dec-
larations. For each declared mapping, our parser automatically detects which table/-
column is mapped to which class/attribute. As output, we obtain the corresponding
Hibernate schema (i.e., the set of tables/columns concerned by a Hibernate mapping
as well as the code location where the mapping is declared).

JPA Schema Extraction

In contrast to the Hibernate mappings, the JPA mappings are defined through an-
notations directly declared in the source code itself. To realize this task, we imple-
mented a Java code analyzer; it constructs an abstract syntax tree and uses a visitor to
navigate through the different Java nodes and expressions, looking for annotation
nodes. Once detected, our analyzer determines which database objects (table/col-
umn) and code elements (class/attribute) are concerned by the mapping declaration.
As output, we obtain the corresponding JPA schema.

Finally, the Hibernate and JPA schemas are merged as a condensed schema.
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5.3.2 Historization

To realize this task, we made the choice to use a relational database to store the
historical dataset. Relational DBMSs offer mechanisms to easily query this historical
information, which motivates this choice. The historization of every DISS artefact
(i.e., source code, database schema, ORM mappings and database accesses) consists
in filling (a particular part of) this relational database. The Version table is the
central table and brings a temporal dimension. This table contains information
about each system version, i.e., the commit date and the developer’s identifier who
committed the version. Algorithm 4 fills the table with each system version and its
characteristics.

1 procedure populateVersion(versions)
2 for v ∈ versions do
3 INSERT INTO Version VALUES (v.id, v.date, v.developer);
4 end

Algorithm 4: Algorithm filling the Version table.

Source Code Historization

Figure 5.14 depicts the database schema fragment concerned by the source code
historization. The CodeObject table materializes a particular source code object,
i.e., a Java File, Class, Method or Attribute. The position of each code object
in the parent file is recorded in the CodeObjectPosition table. This position is
expressed as a couple of coordinates (the begin column and line, and the end column
and line). This position can vary from a system version to another one; the couple
of columns (object_id, version_id) identifies the code object and the system
version in question.

Each code object has a unique id. However, they own a secondary identifier: a
file is identified by its filePath in the repository; a class is identified by its owner
file and classPath; a method is identified by its owner class and its signature; an
attribute is identified by its owner class and its name.

Algorithm 5 describes the process filling the database with historical information
about source code objects. It takes the list of system versions as input. The algorithm
iterates over every system version. For each Java file of the current version, we check
if the file was already encountered in the preceding versions and therefore already
exists in the database (line 6). If it does not exist yet (lines 7-10), we insert it into the
CodeObject and File tables. Otherwise, we retrieve the primary identifier of the
existing file. Line 15 inserts the file position in the CodeObjectPosition table. The
same process is applied to each encountered class/method/attribute.

Database Schema Historization

Figure 5.15 depicts the database schema fragment concerned by the database
schema historization. The DatabaseObject table materializes a particular database
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Figure 5.14: Logical schema of the source code historization.

schema object, i.e., a Table or Column. Each table/column has a unique identifier.
However, they also have a secondary identifier: a table is identified by its name, and
a column is identified by its parent table and its name. The versions of presence
of each table are stored in the tableVersions table. The versions of presence of
each column are stored in the ColumnType table; moreover, this table also contains
information about the column type, which may vary from a version to another one.

Algorithm 6 describes the process filling the database with historical information
about the tables and columns. It takes the list of system versions as input. The
algorithm iterates over every system version. For each table of the current version,
we check if the table already exists in the database (line 6). If it does not exist yet,
we insert it into the DatabaseObject and Tables tables. Otherwise, we retrieve
the primary identifier of the existing table. Line 15 adds the current version to its
list of presence. Line 16 iterates over each column of the current table. Line 18
verifies if the column already exists in the database. If not yet, we insert it into the
DatabaseObject and Columns tables. Line 27 stores the current type of the column
in the ColumnType table.

ORM Schema Historization

Figure 5.16 depicts the database schema fragment concerned by the ORM schema
historization. The Mapping table materializes a particular ORM mapping, i.e., a
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1 procedure populateCodeObjects(versions)
2 id = 0;
3 for v ∈ versions do
4 for file ∈ v.files do
5 file2 = SELECT * FROM File where filePath:=file.filePath;
6 if file2 = NULL then
7 file.id = id;
8 INSERT INTO CodeObject VALUES (file.id,NULL,NULL,1,NULL);
9 INSERT INTO File VALUES (file.id, file.filePath);

10 id = id + 1;

11 end
12 else
13 file.id = file2.id;
14 end
15 INSERT INTO CodeObjectPosition VALUES (file.id,v.id,file.beginLine,file.beginCol,file.endLine,file.endCol);
16 for class ∈ file.classes do
17 class2 = SELECT * FROM Class WHERE classPath:=class.classPath AND file_id:=file.id;
18 if class2 = NULL then
19 class.id = id;
20 INSERT INTO CodeObject VALUES (class.id,NULL,NULL,NULL,1);
21 INSERT INTO Class VALUES (class.id,class.classPath, class.isInterface,file.id);
22 id = id + 1;

23 end
24 else
25 class.id = class2.id;
26 end
27 INSERT INTO CodeObjectPosition VALUES

(class.id,v.id,class.beginLine,class.beginCol,class.endLine,class.endCol);
28 for m ∈ class.methods do
29 m2 = SELECT * FROM Method WHERE signature:=m.signature AND class_id:=class.id;
30 if m2 = NULL then
31 m.id = id;
32 INSERT INTO CodeObject VALUES (m.id,NULL,1,NULL,NULL);
33 INSERT INTO Method VALUES (m.id,m.signature,class.id);
34 id = id + 1;

35 end
36 else
37 m.id = m2.id;
38 end
39 INSERT INTO CodeObjectPosition VALUES

(m.id,v.id,m.beginLine,m.beginCol,m.endLine,m.endCol);

40 end
41 for a ∈ class.attributes do
42 a2 = SELECT * FROM Attribute WHERE name:=a.name AND class_id:=class.id;
43 if a2 = NULL then
44 a.id = id;
45 INSERT INTO CodeObject VALUES (a.id,1,NULL,NULL,NULL);
46 INSERT INTO Attribute VALUES (a.id,a.name,class.id);
47 id = id + 1;

48 end
49 else
50 a.id = a2.id;
51 end
52 INSERT INTO CodeObjectPosition VALUES

(a.id,v.id,a.beginLine,a.beginCol,a.endLine,a.endCol);

53 end
54 end
55 end
56 end

Algorithm 5: Algorithm populating the database with historical information about
source code evolution.

TableMapping or a ColumnMapping. Each mapping has a unique identifier. In
addition, they have a secondary identifier: a table mapping is identified by the class
where it is declared and the used technology (Hibernate/JPA); a column mapping
is identified by the attribute on which the mapping is declared and the technology.
A mapping can exist in several system versions; the MappingVersion table contains
the list of presence of every mapping. A mapping is declared between a code object
(class or attribute) and a set of database objects (tables or columns). However, the
set of mapped objects can change over time; therefore, the MappingAccess table
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Figure 5.15: Logical schema of the database schema historization.

1 procedure populateDBSchema(versions)
2 id = 0;
3 for v ∈ versions do
4 for table ∈ v.tables do
5 table2 = SELECT * FROM Tables WHERE name:=table.name;
6 if table2 = NULL then
7 table.id = id;
8 INSERT INTO DatabaseObject VALUES (table.id,1,NULL);
9 INSERT INTO Tables VALUES (table.id,table.name);

10 id = id + 1;

11 end
12 else
13 table.id = table2.id;
14 end
15 INSERT INTO tableVersions VALUES (table.id,v.id);
16 for col ∈ table.columns do
17 col2 = SELECT * FROM Columns where name:=col.name AND table_id:=table.id;
18 if col2 = NULL then
19 col.id = id;
20 INSERT INTO DatabaseObject VALUES (col.id,NULL,1);
21 INSERT INTO Columns VALUES (col.id,col.name,table.id);
22 id = id + 1;

23 end
24 else
25 col.id = col2.id;
26 end
27 INSERT INTO ColumnType VALUES

(col.id,v.id,col.minCard,col.maxCard,col.type,col.length,col.decimal,col.defaultValue);

28 end
29 end
30 end

Algorithm 6: Algorithm populating the database with historical information about
database schema evolution.

contains, for each version of presence, the set of mapped tables/columns.

Sometimes, some special mappings can be declared; let us imagine cases where
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Figure 5.16: Logical schema of the ORM schema historization.

developers define an incorrect mapping between a class/attribute and a misspelled
or deleted table/column. Storing such information can be precious for detecting
error-prone database-related code locations. This is why we added some columns to
the MappingAccess table; the tableName and columnName columns store the name
of the mapped table/column. If the mapped object is an actual table/column the
object_id column will contain the actual identifier of the mapped table/column.
Otherwise, the value will be null. In the case where the mapping is declared with
a removed (or later created) table/column, the isOutdatedObject column will be
equals to true. Otherwise, false.

Algorithm 7 describes the process filling the database with historical information
about ORM mappings. It takes the list of system versions as input. The algorithm
iterates over every system version. For each table mapping of the current version,
we check if the mapping already exists in the database (line 10). If not, we insert
it into the Mapping and TableMapping tables. Otherwise, we retrieve the primary
identifier of the existing mapping. Line 19 adds the current version to its list of
presence. For each table concerned by the mapping, line 25 checks if the table is an
actual table registered in the database. If yes, line 27 checks if the table is present
in the current database schema version. Line 29 inserts information about each
mapped table.

From line 33, the algorithm iterates over every column mapping of the current
version. Line 38 verifies the existence of the column mapping in the database. Line
47 adds the current version to its list of presence. For each column concerned by the
mapping, line 57 checks if the column is an actual column registered in the database.
If it is, line 59 checks if the column is present in the current database schema version.
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Line 61 inserts information about each mapped column.

1 procedure populateORMSchema(versions)
2 id = 0;
3 mv_id = 0;
4 ma_id = 0;
5 for v ∈ versions do
6 for tm ∈ v.tableMappings do
7 file = SELECT * FROM File WHERE filePath:=tm.filePath;
8 class = SELECT * FROM Class where classPath:=tm.classPath AND file_id:=file.id;
9 tm2 = SELECT * FROM TableMapping techno:=tm.techno AND class_id:=class.id;

10 if tm2 = NULL then
11 tm.id = id;
12 INSERT INTO Mapping VALUES (tm.id,1,NULL);
13 INSERT INTO TableMapping VALUES (tm.id,tm.techno,class.id);
14 id = id + 1;

15 end
16 else
17 tm.id = tm2.id;
18 end
19 INSERT INTO MappingVersion VALUES (mv_id,v.id,tm.id);
20 mv_id = mv_id + 1;
21 for tMap ∈ tm.tables do
22 table = SELECT * FROM Tables where name:=tMap.name;
23 object_id = NULL;
24 isOutdated = false;
25 if table 6= NULL then
26 object_id = table.id;
27 isOutdated = ((SELECT 1 FROM TableVersions where table_id := object_id AND version_id := v.id)

= NULL);

28 end
29 INSERT INTO MappingAccess VALUES (ma_id,tm.table.name,NULL,isOutdated,object_id,mv_id);
30 ma_id = ma_id + 1;

31 end
32 end
33 for cm ∈ v.columnMappings do
34 file = SELECT * FROM File where filePath:=cm.filePath;
35 class = SELECT * FROM Class where classPath:=cm.classPath AND file_id:=file.id;
36 attribute = SELECT * FROM Attribute WHERE name:=cm.attributeName AND class_id:=class.id;
37 cm2 = SELECT * FROM ColumnMapping WHERE techno:=cm.techno AND attribute_id:=attribute.id;
38 if cm2 = NULL then
39 cm.id = id;
40 INSERT INTO Mapping VALUES (cm.id,NULL,1);
41 INSERT INTO ColumnMapping VALUES (cm.id,cm.techno,attribute.id);
42 id = id + 1;

43 end
44 else
45 cm.id = cm2.id;
46 end
47 INSERT INTO MappingVersion VALUES (mv_id,v.id,cm.id);
48 mv_id = mv_id + 1;
49 for cMap ∈ cm.columns do
50 table = SELECT * FROM Tables WHERE name:=cMap.table.name;
51 column = NULL;
52 if table 6= NULL then
53 column = SELECT * FROM Columns WHERE name:=cMap.name AND table_id:=table.id;
54 end
55 object_id = NULL;
56 isOutdated = false;
57 if column 6= NULL then
58 object_id = column.id;
59 isOutdated = ((SELECT 1 FROM ColumnType where column_id := object_id AND version_id :=

v.id) = NULL);

60 end
61 INSERT INTO MappingAccess VALUES

(ma_id,tm.table.name,tm.column.name,isOutdated,object_id,mv_id);
62 ma_id = ma_id + 1;

63 end
64 end
65 end

Algorithm 7: Algorithm populating the database with historical information about
ORM schema evolution.
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Database Access Historization

Figure 5.17 depicts the database schema fragment concerned by the database access
historization. The DatabaseAccess table materializes a particular database access,
i.e., a Query or CRUDOperation. Each database access is characterized by its pro-
gram path; namely a database access appears in the program code as MethodCall
to particular methods (at a particular position in the code). This position can change
from a version to another one; the MethodCallPosition table records its position
at a given version.

Each access has a unique identifier. In addition, we decided to affect them an
implicit secondary identifier; a query is identified by its query value (originQuery),
the access technology (JDBC/Hibernate/JPA) and its program path. A CRUD op-
eration is identified by the used mapping, the access operation (insertion/selec-
tion/update/deletion) and its program path.

A JPQL/HQL query has a corresponding translated SQL form . This translated
SQL form can change according to the system version. The VersionQuery table
stores the translatedSQL value at a given version. However, the SQL translation
may sometimes fail because of a syntax error; in such a case, the translatedSQL
column will be null. Since the translated SQL value may change from a system
version to another one, the set of tables/columns accessed by the query may change
too. The QueryAccess table contains the set of objects accessed at a given version.
In addition, the isExplicit column indicates if the object is explicitly or implicitly
accessed. The isOutdatedObject column indicates if the query attempts to access
a removed/non-existing table/column. This field is valuable to detect error-prone
database-related code locations.

A CRUD operation can also exist in several system versions. The VersionCRUD
table contains the list of presence of each mapping. The isOutdatedMapping
column indicates if the concerned mapping is up-to-date or not.

Algorithm 8 describes the process filling the database with historical information
about the database accesses. It takes the list of system versions as input. The
algorithm iterates over every system version. For each query, line 5 checks if it
already exists in the database (the details of the loadQuery procedure are given in
Algorithm 9). If it does not, we insert it into the DatabaseAccess and Query tables.
Lines 10-17 register the program path in the MethodCall table. Since the program
path position of an access can change from a version to another one, line 24 records
its position in the MethodCallPosition table. Line 26 adds the current version to
the list of presence of the query. Lines 30 and 36 register respectively, the tables and
columns accessed by the query, with the verification that the object is up-to-date.

Line 40 iterates over each CRUD operation. Line 41 checks if the CRUD op-
eration already exists in the database (the details of the loadCRUD procedure are
given in Algorithm 10). If it does not, we insert it into the DatabaseAccess and
CRUDOperation tables. Line 55 registers the access program path, while line 65
registers its position in the current code version. Line 68 adds the current version to
its list of presence, with the verification that the concerned mapping is up-to-date.
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Figure 5.17: Logical schema of the database access historization.
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1 procedure populateDBAccesses(versions)
2 id = 0,mc_id = 0,vq_id = 0,vc_id = 0;
3 for v ∈ versions do
4 for query ∈ v.queries do
5 query2 = loadQuery(query);
6 if query2 = NULL then
7 query.id = id;
8 INSERT INTO DatabaseAccess VALUES (query.id,1,NULL);
9 INSERT INTO Query VALUES (query.id,query.originQuery,query.techno);

10 for methodCall ∈ query.programPath do
11 methodCall.id = mc_id;
12 file = SELECT * FROM File where filePath:=methodCall.filePath;
13 class = SELECT * FROM Class WHERE classPath:=methodCall.classPath AND file_id:=file.id;
14 method = SELECT * FROM Method WHERE signature:=methodCall.signature AND

class_id:=class.id;
15 INSERT INTO MethodCall VALUES (mc_id,id,method.id);
16 mc_id = mc_id + 1;

17 end
18 id = id + 1;

19 end
20 else
21 query.id = query2.id;
22 end
23 for mc ∈ query.programPath do
24 INSERT INTO MethodCallPosition VALUES

(mc.id,v.id,mc.beginLine,mc.beginCol,mc.endLine,mc.endCol);

25 end
26 INSERT INTO VersionQuery VALUES (vq_id,v.id,query.id,query.translatedSQL);
27 for table ∈ query.accessedTables do
28 t = SELECT * FROM Tables WHERE name:=table.name;
29 isOutdated = ((SELECT 1 FROM TableVersions WHERE table_id := t.id AND version_id := v.id) = NULL);
30 INSERT INTO QueryAccess VALUES (t.id,vq_id,isOutdated,true);

31 end
32 for column ∈ query.accessedColumns do
33 t = SELECT * FROM Tables WHERE name:=column.table.name;
34 c = SELECT * FROM Columns WHERE name:=column.name AND table_id:=t.id;
35 isOutdated = ((SELECT 1 FROM ColumnType WHERE column_id := c.id AND version_id := v.id) =

NULL);
36 INSERT INTO QueryAccess VALUES (c.id,vq_id,isOutdated,c.isExplicit);

37 end
38 vq_id = vq_id + 1;

39 end
40 for crud ∈ v.crudOperations do
41 crud2 = loadCRUD(crud);
42 if crud2 = NULL then
43 crud.id = id;
44 INSERT INTO DatabaseAccess VALUES (crud.id,NULL,1);
45 file = SELECT * FROM File WHERE filePath:=crud.filePath;
46 class = SELECT * FROM Class WHERE classPath:=crud.classPath AND file_id:=file.id;
47 mapping = SELECT * FROM TableMapping WHERE techno:=crud.techno AND class_id:=class.id;
48 crud.mapping = mapping;
49 INSERT INTO CRUDOperation VALUES (crud.id,crud.operation,crud.techno,mapping.id);
50 for methodCall ∈ crud.programPath do
51 methodCall.id = mc_id;
52 file = SELECT * FROM File WHERE filePath:=methodCall.filePath;
53 class = SELECT * FROM Class WHERE classPath:=methodCall.classPath AND file_id:=file.id;
54 method = SELECT * FROM Method WHERE signature:=methodCall.signature AND

class_id:=class.id;
55 INSERT INTO MethodCall VALUES (mc_id,id,method.id);
56 mc_id = mc_id + 1;

57 end
58 id = id + 1;

59 end
60 else
61 crud.id = crud2.id;
62 crud.mapping = crud2.mapping;

63 end
64 for mc ∈ crud.programPath do
65 INSERT INTO MethodCallPosition VALUES

(mc.id,v.id,mc.beginLine,mc.beginCol,mc.endLine,mc.endCol);

66 end
67 isOutdated = ((SELECT 1 FROM MappingVersion WHERE version_id := v.id AND mapping_id :=

crud.mapping.id) = NULL);
68 INSERT INTO VersionCRUD VALUES(vc_id,v.id,crud.id,isOutdated);
69 vc_id = vc_id + 1;

70 end

71 end

Algorithm 8: Algorithm populating the database with historical information about
the evolution of the database accesses.
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1 procedure loadQuery(query)
2 for query2 ∈ (SELECT * FROM Query WHERE originQuery:=query.originQuery

AND techno:=query.techno) do
3 programPath2 = SELECT * FROM MethodCall WHERE access_id:=query2.id;
4 if query.programPath = programPath2 then
5 return query2;
6 end

7 end
8 return NULL;
Algorithm 9: Algorithm searching for the existence of a given query in our database,
based on the equality of the original query value, the used technology and the
program path.

1 procedure loadCRUD(crud)
2 for crud2 ∈ (SELECT * FROM CRUDOperation WHERE

mapping_id:=crud.mapping_id AND operation:=crud.operation) do
3 programPath2 = SELECT * FROM MethodCall WHERE access_id:=crud2.id;
4 if crud.programPath = programPath2 then
5 return crud2;
6 end

7 end
8 return NULL;
Algorithm 10: Algorithm searching for the existence of a given CRUD operation in
our database, based on the equality of the used mapping, the operation and the
program path.

5.4 Application to Real-Life Systems

In this Section, we show the benefits of our approach by studying the evolution
of three large open-source Java systems, i.e., OSCAR, OpenMRS and Broadleaf. To
perform this study, we apply the approach to each system in order to measure
how some characteristics of database usage in these systems evolve over time. Our
objective is to understand, at a fine-grained level, how the systems evolve over time,
how the database and code co-evolve and how several technologies may co-exist
into the same system.

5.4.1 Analysis Background

For all the systems, we applied our automatic historical analysis approach, presented
in the previous section, on the source code of selected versions from the version
control systems. Firstly, we picked the initial commits and then we went on through
the next versions and selected those that were at least 15 days from the last selected
version and contained at least 500 modified lines3. We have thus a snapshot of the

3Those values were arbitrarily chosen, based on our observations. We claim that 500 lines modified
between successive considered versions constitute significant changes to study the evolution of those
systems.
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Figure 5.18: Evolution over time of the number of files in each system.

state of each system in every 2-3 weeks of its development. We respectively selected
242, 164 and 118 versions for OSCAR, OpenMRS and Broadleaf

Finally, we applied our extraction process to each version and historized them.
As a result, we have a database for each of the three systems, filled with historical
information (as implemented in Section 5.3.2).

5.4.2 Results

With the exploitation of our databases, we studied the three data-intensive systems.
Through the measurement of database usage characteristics, we investigated and
understood how the systems evolve over time, how the database and source code
co-evolve and how several technologies co-exist within a same system. Through our
study, we analyzed the history of each system and pointed out that each of them has
a specific design and evolution.

As is customary for many open source projects, the number of code files of each
system grows more or less linearly over time (see Figure 5.18).

Each of the three considered systems appears to have its own specific database
schema growth trend. Figure 5.19 depicts, for each system, the evolution of the num-
ber of tables. While the schema of OSCAR continuously grows over time, OpenMRS
and Broadleaf seem to have a more periodic growth. There are fewer changes in
the OpenMRS schema. Its developers rarely remove tables and columns and have
a well-prepared extension phase with the addition of 21 tables in November 2011.
Except for this period of growth, the schema size remains constant. After an initial
phase of growth (up to October 2009), the Broadleaf schema remains more or less
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Figure 5.19: Evolution over time of the number of tables in each system.

stable until June 2012. From there until February 2013, the schema undergoes a
strong growth, followed again by a stable phase. Nevertheless, during that stable
period, we observe some schema changes with successive additions and removals
of tables. A more detailed analysis revealed that those changes correspond to a
renaming phase of some tables.

In order to study the co-evolution between the source code and the database
schema, we focused on three artifacts: (1) the tables that are accessed and the way
to access them (Figure 5.20); (2) the code locations and files accessing the database
(respectively Figure 5.21 and Figure 5.22); and (3) the distribution of mappings across
ORM technologies (Figure 5.23).

OSCAR

(1) Initially, OSCAR only used the JDBC API to access the database. In August 2006,
Hibernate was introduced in the system but the number of JDBC-accessed tables did
not decrease. In April 2008, JPA appears but remains infrequently used up to March
2012. While JDBC was the prevailing technology (in terms of accessed tables) until
there, a massive migration phase happened and JPA became the main technology,
with a decrease of Hibernate and JDBC usage. Today, the three technologies still
co-exist and we observe that many tables in the database are accessed by at least
two technologies, which may be considered as a sign of bad coding practices, or a
technology migration process that is still ongoing.

(2) The database access location distribution follows a different trend. Until the
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introduction of JPA, there was a majority of Hibernate access locations. Once JPA
was introduced, the number of Hibernate and JDBC access locations progressively
decreased. We also analyzed the distribution of database technologies across Java
files. Here again, the distribution over time confirms a massive migration phase in
March 2012 with the explosion of the number of files that access the database via JPA
and the decrease of the number of files using JDBC or Hibernate. Some files allow
accessing the database via both JDBC and Hibernate and might indicate bad coding
practices or non-ended migration.

(3) The observed migration phase also impacts the ORM mappings defined between
the Java classes and the database tables. The majority of the Hibernate mappings
has been replaced by JPA mappings. Nevertheless, a big part of the database schema
remains unmapped. A small set of tables contain both Hibernate and JPA mappings,
which is a potential problem that should probably be fixed in the future.

OpenMRS

(1) Since the beginning, OpenMRS combined JDBC and Hibernate to query its
database. However, while a majority of tables are accessed via Hibernate, only a
few tables are accessed through JDBC. In November 2011, almost all the 21 added
tables are exclusively accessed via Hibernate. Hibernate clearly appears as the main
technology but it is interesting to point out that some tables are accessed via both
JDBC and Hibernate during the whole system’s life.

(2) The access location point distribution confirms that Hibernate is the main tech-
nology. The number of JDBC locations is much lower than the Hibernate locations
and the number of Hibernate files is the predominant part. What is more surprising
is the increasing number of JDBC files in comparison to the limited number of tables
accessed via JDBC.

(3) Since we observed that Hibernate was the main technology and also the only
used ORM, it is not astounding to see that the majority of tables are mapped to Java
classes.

Broadleaf

(1) Broadleaf uses JPA for accessing its database from the programs source code. The
number of non-accessed tables remains very high during the whole system’s life.
Moreover we observe a stabilization of that number from February 2013 (one can
see the same trend regarding the size of the database schema).

(2) The access location point distribution also follows the same trend with that
stabilization in February 2013. What is more interesting is that Broadleaf looks
very well designed and divided from the start of the project with an average of one
database-accessing file per table.
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(3) The ORM mappings are defined on the majority of the database tables and
do not evolve anymore since the stabilization period.

5.4.3 Discussion

OSCAR is a frequently changing system. Code and database schema have continu-
ously evolved. It seems clear that the introduction of a new technology (Hibernate
and later JPA) was aimed to replace the previous one; we can clearly identify the
decrease in the usage of JDBC (resp. Hibernate) after the introduction of Hibernate
(resp. JPA).We noticed that those migrations are still ongoing, as can be witnessed by
the presence of tables accessed by several technologies, as well as by the presence of
several technologies in a same file. A more blatant example is the co-existence of
Hibernate and JPA mappings for some tables. Furthermore, the three technologies
(JDBC, Hibernate and JPA) have co-existed for several years and make code and
database evolution more complex and time-consuming. OSCAR developers even
admit it: one “can use a direct connection to the database via a class called DBHandler,
use a legacy Hibernate model, or use a generic JPA model. As new and easier database
access models became available, they were integrated into OSCAR. The result is that
there is now a slightly noisy picture of how OSCAR interacts with data in MySQL.”
[Ruttan, 2008].

Compared to OSCAR, OpenMRS is a less prone to changes. Its code has increas-
ingly evolved over time but there were very fewer changes in the database schema,
which has remained quite stable over the years. These changes seem to be periodic
and better anticipated. Most of those changes are applied at the same versions.
Moreover, one can notice that database objects are rarely removed from the schema.
Another major difference with OSCAR is that JDBC and Hibernate co-exist from the
beginning of the project and are complementary: no technology aims to substitute
the other.

Among the three systems, Broadleaf seems to be the one with the simplest design.
Indeed, Broadleaf only uses JPA to communicate with the database. Moreover,
Broadleaf looks well structured and easy to maintain. The detection of database
locations in the code requires little effort since the lines of code that access tables
are usually regrouped into a single file.

5.5 Concluding Remarks

In this Chapter, we presented a historical analysis approach collecting evolution
history information of several DISS artefacts. While the extraction phase of our
approach (described in Section 5.2.1) is specifically designed for Java systems, the
historization phase relies on a data model detailed in Section 5.2.2 and could become
totally technology-independent with some minor adaptations.

We then motivated the benefits of this approach on three real-life systems; we
show how exploiting this historical information can significantly aid at analyzing,
at a fine-grained level, how the systems evolved over time. During our analysis,
we made interesting observations; we observed, among others, that the very same
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Figure 5.20: Distribution of the accessed tables across the technologies.
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Figure 5.21: Database access point distribution.
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Figure 5.23: Distribution of the mapped tables across the technologies.
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tables could be accessed by different data manipulation technologies within the
programs. We also observed that database schemas may quickly grow over time,
most schema changes consisting in adding new tables and columns. Finally, we
saw that a significant subset of database tables and columns are not accessed (any
longer) by the application programs. The presence of such “dead” schema elements
might suggest that the co-evolution of schema and programs is not always a trivial
process for the developers. The developers seem to refrain from evolving a table in
the database schema, since this may make related queries invalid in the programs.
Instead, they most probably prefer to add a new table, by duplicating the data and
incrementally updating the programs in order to use the new table instead of the
old one. In some cases, the old table version is never deleted even when it is not
accessed anymore by the programs. Further investigations are needed to confirm
this hypothesis.

Roadmap

In this chapter, we have presented a historical analysis approach that allows us to
analyze, at a fine-grained level, how the program source code and the database
schema have co-evolved over time. This historical analysis relies on a data model
gathering information about the evolution history of several system artefacts (i.e.,
source code, database schema, database usage and ORM usage).

In Chapters 6 and 7, we exploit this data model; Chapter 6 presents a tool-
supported approach, that allows developers to simulate a database schema change
and automatically determine the set of source code locations that would be im-
pacted by this change. Developers are then provided with recommendations about
what they should modify at those source code locations in order to avoid inconsis-
tencies. Chapter 7 presents DAHLIA 2.0, a visualization tool, that allows developers
to analyze the database usage in dynamic and heterogeneous systems by visualizing
the interactions between the application program and the database. The proposed
visualization uses a city metaphor.
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Based on the historical analysis presented in the previous chapter, this chaptera

presents a tool-supported approach that allows developers to simulate a database
schema change and automatically determine the set of source code locations that
would be impacted by this change. Developers are then provided with recommenda-
tions about what they should modify at those source code locations in order to avoid
inconsistencies. The approach has been designed to deal with Java systems that use
dynamic data access frameworks such as JDBC, Hibernate and JPA. We motivate and
evaluate the proposed approach, based on three real-life systems of different size and
nature.

aThis chapter is an extension of our paper [Meurice et al., 2016b] published in the pro-
ceedings of the International Conference on Software Quality, Reliability and Security.(QRS
2016) and was granted the Best Paper Award.

6.1 Introduction

We observed in previous chapters that data-intensive applications tend to access
their underlying database in an increasingly dynamic way. This level of dynamicity
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significantly complicates the task of adapting application programs to database
schema changes. In this context, manually recovering the database access locations
in the source code and precisely identifying the database elements accessed at those
locations may prove complicated due to higher levels of abstraction and dynamicity.
Thus, assessing the impact of a database schema change on the source code is
becoming increasingly complex and error-prone for developers. Indeed, failing
to correctly adapt programs to an evolving database schema results in program
inconsistencies, which in turn may cause program failures.

This Chapter addresses this particular problem. It presents a tool-supported
approach to detect and prevent program inconsistencies under database schema
changes. The approach analyzes the evolution history of the system in order to
identify program inconsistencies due to past database schema changes. By means of
a what-if analysis, our approach also allows developers to simulate future database
schema modifications and to determine how such modifications would affect the
application code. In order to ensure that the programs consistency is preserved
under those schema changes, our approach makes recommendations to developers
about where and how they should propagate the schema changes to the source code.

6.2 History Analysis For Inconsistency Detection

In this Section, we present the motivation of our approach through analyzing the
past of large systems and in particular, the behaviour of developers when adapting
programs to database schema changes. We study how source code and database
schema co-evolve to estimate the related effort and difficulties arising when man-
ually adapting the source code to database schema changes. This history analysis
will help developers to understand how source code and database co-evolve over
time. Moreover, analyzing the co-evolution history may help developers to detect
program inconsistencies due to awkward past database schema changes which were
not correctly propagated to the code, and to understand how the system has come
thus far. By this exploratory analysis, we aim to establish the necessity and the
potential benefit of a tool-supported approach helping developers to achieve future
database-program co-evolution tasks.

6.2.1 Analysis Background

For achieving this, we will analyze the history of three large real-life systems (i.e.,
OSCAR, OpenMRS and Broadleaf) and in particular how developers adapted the
source code to database schema changes. We decided to target 4 types of database
schema changes: deleting a table, renaming a table, deleting a column and renaming
a column. We selected those types of changes since (1) they belong to the categories
of changes observed in practice by several authors [Sjøberg, 1993; Curino et al., 2008;
Vassiliadis et al., 2015], and (2) because those types of changes could potentially
break the program source code. Adding a new table, or adding a new index, for
instance, while also frequently used in practice [Curino et al., 2008], do not have an
immediate impact on program source code. The four types of changes we consider
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may potentially make existing program queries fail, in case the source code is not
properly adapted.

For analyzing the co-evolution history of each system, we exploited their corre-
sponding database (produced in Section 5.4.1) which contains information about
the evolution history of each system.

6.2.2 Co-Evolution History Analysis

Analyzing how database schemas and programs co-evolve in Broadleaf, OpenMRS
and OSCAR will help us to establish the usefulness and the potential benefit of our
what-if analysis approach which can support developers to achieve co-evolution
tasks (the what-if analysis will be presented later in Section 6.3). For that, we analyze
the historical databases of the three systems in order to evaluate the effort required in
the past (without our what-if analysis approach) for adapting the applications source
code in reaction to database schema changes. As previously explained, we focused
on 4 types of database schema changes performed in the systems history, namely
deleting a table, renaming a table, deleting a column and renaming a column. We
rely below on several co-evolution metrics to estimate the time and effort required
to propagate database schema changes to the programs source code.

Deleting a table/column

For evaluating the impact of a table deletion (TD) and a column deletion (CD) on
the source code, we analyzed the database schema history of each system to identify
the set of tables and columns which have been deleted. We only considered the
tables/columns which have been permanently removed from the schema; some
deletions may sometimes be done by distraction and are directly recovered once
identified.

Tables 6.1 and 6.2 summarize the different measures we use for evaluating the
co-evolution effort needed to deal with a table and column deletion at the source
code level, respectively. The first column of both tables expresses the number of
table/column deletions detected in each system. The second represents the number
of deletions which are still currently unsolved, i.e., for which there still exist some
accesses to the deleted table/column in the source code or for which an ORM map-
ping linking an entity class/attribute to the deleted table/column still exists. The
third column shows the average time (expressed in number of versions) needed to
adapt the code (no more ORM mapping or access to the table/column). The third
column also includes the longest/maximal period of time to solve a table/column
deletion in the source code (also expressed in number of versions). The minimal
number of versions to solve a table/column deletion in the best case is one version:
thus removing the table/column from the schema counts as one. The last column
indicates, for the tables/columns that were accessed before their deletion, the av-
erage and maximum numbers of related source code locations, i.e., the number of
accesses or mappings that would potentially be impacted as a propagation of each
table/column deletion.
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System #Table #Unsolved Propagation Time #Accesses
Deletions avg∼max avg∼max

OpenMRS 11 1 13.1 ∼ 134 7.5 ∼ 9
Broadleaf 86 0 1.1 ∼ 6 2.8 ∼ 14
OSCAR 33 5 6.6 ∼ 90 4.1 ∼ 9

Table 6.1: Co-Evolution metrics related to table deletions.

System #Column #Unsolved Propagation Time #Accesses
Deletions avg∼max avg∼max

OpenMRS 32 4 1.7 ∼ 7 2.2 ∼ 4
Broadleaf 154 0 1.1 ∼ 2 4 ∼ 15
OSCAR 170 0 1.1 ∼ 24 6.6 ∼ 132

Table 6.2: Co-Evolution metrics related to column deletions.

The three systems present quite different figures. Deleting a table or a column in
OpenMRS and OSCAR seems to be costly and tedious. By observing the database
schema history, one can notice developers rarely remove database objects. The
general trend suggests that developers add new schema objects (much) more often
than they remove existing objects. However, a table/column deletion does not come
at no cost in terms of program adaptation.

For OpenMRS, if the deleted table was accessed, up to 9 source code locations
could be impacted, 7.5 locations on average. For a deleted column, up to 4 code
locations could be impacted, 2.2 locations on average. Moreover, some deletions
remain unsolved and there still exist some code locations accessing the deleted
table/column. For instance, the deletion of the FORM_RESOURCE table has never
been propagated to the source code up to now. The deletion happened in October
2011 but the developers forgot to delete an old Hibernate mapping still currently
existing1. Through this older mapping, OpenMRS still offers an interface to access
the removed table. We observed the same trend for some column deletions too2.

Moreover, by analyzing the average and maximal time necessary to solve a table/-
column deletion, we observe that removing a table/column is far from being trivial;
on average, almost 2 versions are needed (1 version = 15 days), while the most costly
deletion took 134 versions3. Another interesting point in OpenMRS is that it seems
that not all developers are always aware of a table/column deletion. We found
several deletions which had not been considered by some developers who have
continued to create new accesses to the removed tables/columns. Those accesses

1The reader can find in (http://bit.ly/1XzyuWu) the proof of the existence of that mapping in April
2015. The database schema of that version can be found in (http://bit.ly/24aa3DQ).

2The VOIDED column has been removed from the USERS table in September 2011 and is still currently
accessed (http://bit.ly/1Q39ipQ) via a JDBC query.

3The REPORT table and all its columns were deleted in May 2008. However, OpenMRS still ac-
cessed it until August 2010 (http://bit.ly/1OhJYqu) and defined a Hibernate mapping until April 2014
(http://bit.ly/1Q39but).
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https://github.com/openmrs/openmrs-core/blob/1372f1ba11c612f7497ec53864229e3db792b83f/api/src/main/resources/org/openmrs/api/db/hibernate/FormResource.hbm.xml#L19
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6.2.2. Co-Evolution History Analysis

System Renaming Solution Time #Accesses
avg∼max avg∼max

OpenMRS 1 1 ∼ 1 0 ∼ 0
Broadleaf 14 2.9 ∼ 6 3.3 ∼ 8
OSCAR 7 13.6 ∼ 89 4.1 ∼ 9

Table 6.3: Co-Evolution metrics related to table renamings.

have been dropped only after 76 versions on average and some of them are still
present in the source code at the time of writing this thesis.

OSCAR developers also seem to face some difficulties with table/column dele-
tions. Some table deletions have never been propagated to the source code up to
now. There still exist some ORM mappings and code locations allowing developers
to access the deleted table. The average time to propagate the table deletions is quite
significant (6.6 versions), with a maximal value of 90 versions; it illustrates again that
the propagation process is far from being trivial. Furthermore, we also found 6 table
deletions which had not been considered by some developers who have continued
to create new accesses to the removed tables. Those accesses have been dropped
only after 34 versions on average.

Broadleaf developers seem to better propagate table/column deletions than
OpenMRS and OSCAR developers. They have had more deletions to achieve, but
with less impacted source locations on average. On average, it only took them 1.1
version to adapt the source code to a deletion. However, by observing the maximal
values, one notices that the propagation process is not always straightforward. In
contrast to OpenMRS and OSCAR, all developers seem to be aware of each deletion
since we did not observe the creation of post-mortem accesses.

Renaming a table/column

For evaluating the impact of a table renaming (TR) and a column renaming (CR),
we only focused on those tables/columns which have been renamed on purpose.
Tables 6.3 and 6.4 shows the co-evolution metrics we used for each system (respec-
tively for the table and column renamings). The first column shows the number of
renamed tables/columns in each system. Like for the deletions, we calculated the
average and maximal number of versions necessary for the renamed table/column
to be solved, i.e., there is no more access and ORM mapping to the renamed table/-
column (columns 2 and 3). During a table/column renaming phase, the developers
try to co-evolve the code in order to adapt the outdated database accesses to the
new table/column name.

As a matter of fact, OpenMRS does not constitute a suitable system to study
the impact of a table/column renaming on the code. Indeed, only one table and
ten columns have been renamed in the past and have been immediately solved.
The renamed table/columns were not part of a Hibernate mapping and were never
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System Renaming Solution Time #Accesses
avg∼max avg∼max

OpenMRS 10 1 ∼ 1 0 ∼ 0
Broadleaf 16 1.1 ∼ 2 1.7 ∼ 3
OSCAR 321 1.2 ∼ 38 34.9 ∼ 389

Table 6.4: Co-Evolution metrics related to column renamings.

accessed in the source code. The programs started to access it a few versions after
its renaming.

In OSCAR, 7 tables have been renamed, with an average of 4.1 impacted locations
per table renaming (and one maximal value of 9 locations). However, OSCAR devel-
opers have renamed the columns considerably more, with 321 column renamings.
On average, 34.9 locations are impacted by a column renaming, with an extreme
value of 389 locations. One can notice that renaming is a tedious and costly refactor-
ing that may have unintentional impact on the code for a longer period; some table
and column renamings took several years to be fully propagated to the code4.

In Broadleaf, 14 tables have been renamed, which significantly impacted the
code (up to 8 impacted locations per table renaming). This impact is mainly due
to the developers’ strategy to rename the Java entity class mapped to the renamed
table in order to better fit with the new name. Therefore, changing the current
JPA annotation is not enough to deal with a table renaming and modifying each
access is thus necessary. On average, 2.9 versions are required to remove the JPA
mapping/accesses to the renamed tables. Furthermore the most costly renaming
took 6 versions to be propagated to the source code.
Broadleaf’s developers also rename active columns, as shown by the number of ac-
cesses to the renamed columns. Most columns were accessed before their renaming,
and the propagation of the renamings to the code was immediate. However, such
a quick reaction can be easily explained. All related accesses rely on JPA, therefore
editing the JPA annotation is sufficient to propagate the column renaming5.

Discussion

In summary, we proposed a first approach allowing us to analyze the co-evolution
history of OpenMRS, Broadleaf and OSCAR. We made several interesting obser-
vations; we noticed that source code adaptation is not always a trivial task. We
observed that a schema change may require several months before the source code
is adapted and sometimes, those schema changes cause outdated database accesses
which are never adapted and which could break the code. Even worse, in some cases,

4The FORMCOUNSELLORASSESSMENT table was renamed in December 2006 but was still accessed in
September 2010 (http://bit.ly/1RkAn7w).

5We illustrate an example of a JPA annotation modification to deal with the renaming of a column.
The DATE column has been renamed as DATE_RECORDED in April 2013. You can find the JPA annotation
before (http://bit.ly/1VpsZIF) and after (http://bit.ly/1oMgEE3) the renaming.
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6.3. What-If Analysis for Consistency Preservation
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Figure 6.1: Overview of our what-if analysis approach.

developers keep creating new accesses to removed or renamed schema objects. It
allowed us to point out query failures related to awkward past changes.

6.3 What-If Analysis for Consistency Preservation

Through the history analysis of those systems, we motivated the need for an au-
tomated what-if analysis approach helping developers to simulate hypothetical
database schema evolutions and determine their impact on the source code. The
objectives of our what-if analysis approach are (1) to facilitate database-program
co-evolution by determining the source code locations impacted by a database
schema change and (2) to ensure that the system consistency is preserved over time
under (successive) schema changes.

Our approach allows developers to simulate a database schema change and
provides them with related recommendations on how to adapt the application’s
source code to that change. It tackles the issue of adapting the source code when the
database schema has been modified. The objective of our approach is to propose an
answer to the question ”where and how should I change the code if I perform this
particular database schema change?”.

Figure 6.1 summarizes our approach. It takes 2 inputs, namely (1) a given ver-
sion of the system code (e.g., the current system’s version), and (2) a hypothetical
database schema change (e.g., I wish to delete table t). We apply the extraction and
historization phases as described in Chapter 5. The historization phase is applied to
a single system version (n=1) and therefore, the notion of version present in the ER
model (Figure 5.13) becomes useless. The result of our what-if analysis approach is
a list of recommendations made to developers for adapting the code to that change
(e.g., You need to remove the Hibernate mapping defined between table t and Java
class c at this location). Each recommendation invites the developer to modify a
particular source code location which would be impacted by the future database
schema change.

Let o be the database object to modify in the schema, Ao , the set of code locations
accessing o and Mo , the set of ORM mappings referencing o. Ao is defined as
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Ao = Ae
o ∪Ai

o ; where Ae
o and Ai

o represent the sets of code locations that, respectively,
explicitly and implicitly6 access o.

Once all those sets are computed, we know the code locations potentially im-
pacted by a future modification of o. Depending on the type of the operation to
perform on o, the impact on the code is different. This is why we propose a strategy
to deal with 5 types of database schema changes: deleting/renaming a table, delet-
ing/renaming a column and changing the type of a column. We selected those types
of changes since (1) they belong to the categories of changes observed in practice by
several authors [Sjøberg, 1993; Curino et al., 2008; Vassiliadis et al., 2015], and (2)
because those types of changes potentially have an impact on program source code.
Adding a new table, or adding a new index, for instance, while also frequently used in
practice [Curino et al., 2008], do not have an immediate impact on program source
code. The 5 types of changes we consider may potentially make existing program
queries fail, in case the source code is not properly adapted.

Each strategy is summarized in Table 6.5. A strategy is composed of recommen-
dations or warnings provided to the user. A recommendation indicates a mandatory
modification to apply to a particular source code location; otherwise it would be
broken by the database schema change. A warning invites the developer to pay
attention to a particular source code location which might require a modification;
the developer should thus manually inspect the detected code location to verify if
any modifications are actually required.

Let us illustrate the use of our strategy table through a concrete example. The
developers of a system foresee a future database schema change but first they want
to estimate the cost of that change by assessing the impact on the code with our
what-if analysis approach. They wish to rename the CU ST table (as CU ST OMER)
as well as alter the type of the POST AL_CODE column (integer to string). Figure 6.2
depicts a piece of the source code before (left) and after (right) applying the rec-
ommendations made by our approach. The latter automatically computes ACU ST ,
MCU ST , APOST AL_CODE and MPOST AL_CODE (see Table 6.6). The developers cope
with two database schema changes:

(a) Renaming the CU ST table: (1) the JPA annotation (line 2) is renamed (ID =
III) and (2) the SQL query (line 20) is adapted to the new table name (ID = IV)

(b) Changing the type of the POST AL_CODE column: (1) the JPA attribute (line
9) type is modified (ID = VI), (2) the equality condition c.postalCode =
code of the SQL query (line 27) is modified by the adding of apostrophes
to fit with the new string type (ID = VII) and finally, by inspecting the code
locations (recommended by our approach), the developers could have spotted
the affected locations (lines 15, 16, 22 and 26) and corrected them (ID = V).

6The ID column is explicitly accessed by the following SQL query, while all the other columns of
CUSTOMER are implicitly accessed: select * from CUSTOMER where ID = 0.
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Operation Strategy Type ID
Deleting table • Deleting all the ORM mappings of Mo Recommendation I

• Modifying/Deleting all the accesses of Ae
o Recommendation II

Renaming table • Modifying the table in each mapping of Mo . For in-
stance, a JPA mapping will be modified by changing the
table name in the annotation.

Recommendation III

• Modifying the SQL queries of Ae
o . Indeed, while the Hi-

bernate/JPA accesses are not impacted, the SQL queries
have to be adapted to the new table name.

Recommendation IV

Deleting column • Deleting all the ORM mappings of Mo Recommendation I
• Modifying/Deleting all the explicit accesses of Ae

o . Recommendation II
• Inspecting the code locations of Ae

o and Ai
o . The value

of an accessed column may be explicitly used in the code.
In such a case, our what-if analysis approach proposes
the developer to further inspect the code locations ac-
cessing o to ensure that the value of the deleted column
is not used later in the code.

Warning V

Renaming column • Modifying the column in each mapping of Mo Recommendation III
• Modifying all the SQL queries of Ae

o Recommendation IV
• Inspecting the code locations executing an access of
Ae

o and Ai
o . The approach proposes the developer to fur-

ther inspect the code locations accessing o to ensure that
the value of the renamed column is not used later in the
code.

Warning V

Changing column type • Changing the type of all mapped attributes in Mo Warning VI
• Inspecting the accesses of Ae

o to ensure that the column
value is not used in an equality condition or in an assign-
ment statement. If needed, modify this condition/assign-
ment to comply with the new type.

Warning VII

• Inspecting the code locations executing an access of Ae
o

and Ai
o . The approach proposed the developer to further

inspect the code locations accessing o to ensure that the
value of the column, if used in the code, is stored in a
well-typed variable.

Warning V

Table 6.5: Strategies (recommendations and warnings) for facing a database schema
change.

o = CUST o = POSTAL_CODE

Mo • [L2]@Table(name= "CUST") • [L9]@Column(name= "POSTAL_CODE")

Ae
o • [L20]SELECT * FROM cust WHERE • [L27]from Customer c where

customer_id = id c.postalCode = code

• [L27]from Customer c where
c.postalCode = code

Ai
o • [L20]SELECT * FROM cust WHERE

customer_id = id

Table 6.6: The code locations accessing the CUST table and the POSTAL_CODE column
detected by our what-if analysis approach.
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1 @Ent i ty
2 @Table( name = ”CUST” )
3 pub l i c c l ass Customer{
4 @Id
5 @GeneratedVal ue( gener at or = ” A ddressI d ” )
6 @Column( name = ”CUSTOMER ID” )
7 p r ot ect ed Long i d ;
8

9 @Column( name = ”POSTAL CODE” , nu l l ab l e = f a l se )
10 p r ot ect ed i n t postal Code ;
11 . . .
12 }
13

14 pub l i c c l ass CustomerDAO {
15 pub l i c i n t getPostal CodeByCust I d ( Long i d ) {
16 i n t postal Code ;
17 . . .
18 Stat ement st = conn . cr eat eSt at ement ( ) ;
19 Resul t Set r s = st . executeQuery (
20 ” SELECT * FROM cust WHERE customer i d=” + i d ) ;
21 i f ( r s . nex t ( ) )
22 postal Code = r s . get I n t ( ” post al code” ) ;
23 . . .
24 r et ur n postal Code ;
25 }
26 pub l i c L i st< Customer> get Post al Cust s ( i n t code) {
27 St r i ng hql = ” f rom Customer c where c . postal Code = ” +

code ;
28 L i st< Customer> l i s t = sessi on . cr eat eQuer y ( hql ) . l i s t ( ) ;
29 r et ur n l i s t ;
30 }
31 }

1 @Ent i ty
2 @Table( name = ”CUSTOMER” ) / / ID= I I I
3 pub l i c c l ass Customer{
4 @Id
5 @GeneratedVal ue( gener at or = ” A ddressI d ” )
6 @Column( name = ”CUSTOMER ID” )
7 p r ot ect ed Long i d ;
8

9 @Column( name = ”POSTAL CODE” , nu l l ab l e = f a l se )
10 p r ot ect ed St r i ng postal Code ; / / ID=VI
11 . . .
12 }
13

14 pub l i c c l ass CustomerDAO {
15 pub l i c St r i ng / * ID=V* / getPostal CodeByCust I d ( Long i d ) {
16 St r i ng postal Code ; / / ID=V
17 . . .
18 Stat ement st = conn . cr eat eSt at ement ( ) ;
19 Resul t Set r s = st . executeQuery (
20 ” SELECT * FROM customer WHERE customer i d=” + i d ) ; / / ID=IV
21 i f ( r s . nex t ( ) )
22 postal Code = r s . get St r i ng ( ” post al code” ) ; / / ID=V
23 . . .
24 r et ur n postal Code ;
25 }
26 pub l i c L i st< Customer> get Post al Cust s ( / * ID=V* / St r i ng code) {
27 St r i ng hql = ” f rom Customer c where c . postal Code = ’ ” +

code + ” ’ ” ; / / ID=V I I
28 L i st< Customer> l i s t = sessi on . cr eat eQuery ( hql ) . l i s t ( ) ;
29 r et ur n l i s t ;
30 }
31 }

Figure 6.2: Java code before (left) and after (right) the co-evolution with the help of our what-if analysis approach.
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TR TD CR CD

Broadleaf 12 17 12 52
OpenMRS 0 2 0 5
OSCAR 5 9 7 9

Total 17 28 19 66

Table 6.7: Distribution of the 130 selected database schema changes.

6.4 Evaluation

In this Section, we assess the accuracy of our what-if analysis approach. This evalua-
tion aims to measure (1) correct recommendations, (2) wrong recommendations and
(3) missing recommendations. For calculating those metrics, we rely on the history of
Broadleaf, OpenMRS and OSCAR. Among the whole set of database schema changes
that we observed in the life of those systems (855 changes), we first selected a subset
of changes that would be sufficiently relevant to assess: we only considered the
database schema changes performed on a database object (table/column) which
was still active and used in the applications’ code before the schema modification
(i.e., database object concerned by an ORM mapping or accessed somewhere in
the code). Moreover, we decided not to include the column type changes in the
evaluation; the strategy defined in Table 6.5 to deal with the column type changes is
exclusively composed of warnings and therefore, we excluded them. By applying
those selection conditions, we obtained a subset of 323 database schema changes.
We then randomly selected 130 changes, which represent about 40% (130/323) of all
schema changes with potential impact on the code. Table 6.7 shows the distribution
of those changes.

For each of those 130 changes, we applied our what-if analysis approach to the
system version before the schema change and obtained a set of recommendation-
s/warnings. We then manually calculated the number of:

(a) Correct recommendations: the recommendations which were (and/or should
have been) actually followed by the developers after the schema change.

(b) Wrong recommendations: the recommendations which were not (and/or
should not have been) actually followed by the developers after the schema
change.

(c) Missing recommendations: the modifications actually applied to the code
which constitute a correct propagation of the schema change, but were not
recommended by our approach. For detecting those missing recommenda-
tions, we manually analyzed the code locations directly linked to the modified
database objects (e.g., the accesses, ORM mappings).

While a warning proposed by our approach represents an advice for the devel-
opers to manually inspect if any changes are required, it might constitute a soft
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TR TD CR CD Total Perc.

Correct recommendations 17 90 24 71 202 99%
Wrong recommendations 0 0 0 2 2 1%

Missing recommendations 2 0 1 3 6 5%

Table 6.8: Rates of correct, wrong and missing recommendations.

warning and could be ignored by the developers. Therefore, we do not consider an
ignored warning as a wrong recommendation. However, we consider an actually
followed warning as a correct one.

Table 6.8 presents the results of our manual evaluation. Out of 130 schema
changes, our what-if analysis approach proposed 204 recommendations: 99% are
correct recommendations, while only 1% constitute wrong recommendations. Those
wrong recommendations come from the deletions of two columns. Actually, these
columns were not removed but moved to another table. Since our approach consid-
ered those changes as deletions, it generated two wrong recommendations pertain-
ing to the deletion of the linked ORM mappings. In the future, we expect to extend
our what-if analysis in order to deal with column move operations. Among the 130
schema changes, only 5% of them (6/130) missed a recommendation. Indeed, some
ORM mappings are not detected by our code analyzer and are missed in the resulting
recommendations.

Replication. All our evaluation results are available via our companion website
at https://staff.info.unamur.be/lme/QRS2016/evaluation/. In particular, the reader
can inspect each of the 130 assessed schema changes and verify the validity of
our evaluation. For each schema change, one summarizes the recommendations
made by our what-if analysis tool. Each recommendation is systematically checked
against the actual source code modifications. Direct links to the related source code
locations before and after the propagation of the schema changes are provided, so
that the validity of our manual classification (correct/wrong/missing) can be cross-
checked. An interactive demo of our what-if analysis approach is also available via
our companion website available at https://staff.info.unamur.be/lme/QRS2016/
play. For recent versions of OpenMRS, Broadleaf and OSCAR, the user can select
a database schema object and simulate a schema change operation. The website
returns related recommendations, including links to the impacted source code
locations on GitHub.

6.5 Limitations

In this Section, we discuss the current limitations of our co-evolution history analysis
and our what-if analysis approach, some of them potentially affecting our evaluation
results.

140

https://staff.info.unamur.be/lme/QRS2016/evaluation/
https://staff.info.unamur.be/lme/QRS2016/play
https://staff.info.unamur.be/lme/QRS2016/play


6.5. Limitations

1 String hql = "";
2 if (isNameField)
3 hql += "select concept";
4 hql += " from Concept as concept";
5 if (isNameField)
6 hql += " where concept.shortName = ’0’";
7 Query query = session.createQuery(hql);
8 return (List<Concept>) query.list();

Listing 6.1: Example of the execution of a HQL query (line 8) and the extraction
of false positive queries due to 2 identical boolean conditions. 4 possible
HQL queries are extracted by our analyzer: (1) from Concept as concept, (2)
select concept from Concept as concept,
(3) from Concept as concept where concept.shortName = ’0’ and (4)
select concept from Concept as concept where
concept.shortName = ’0’; (2) and (3) are both false positive queries.

Database Access Extraction

In our co-evolution history analysis (Section 6.2) and what-if analysis (Section 6.3),
we use our historical analysis approach proposed in Chapter 5 which, in turn, builds
on our static analysis approach (presented in Chapter 4) to extract the database
accesses from the Java source code. With this tool support, we are able to identify
which portion of the source code accesses which portion of the database. Unless
that tool dedicated to Java systems is compatible with JDBC, Hibernate and JPA, it
also suffers from some limitations (discussed in Section 4.3.3), which may affect our
results:sNon-existent queries: our database access extractor is designed to rebuild all

the possible string values for the SQL query. Thus, it considers all the possible
program paths. Since it is currently unable to resolve a boolean condition (a
dynamic analysis would be preferable), these cases generate some noise (false
positive queries). Listing 6.1 illustrates an example of false positive queries
from OpenMRS. Since our what-if analysis approach is based on the recovered
SQL queries, it may in turn generate some wrong recommendations. Note
that we did not encounter this problem by evaluating the past 130 database
schema changes.sMissing queries: some queries cannot be fully recovered by our analyzer due
to its static nature. In Section 4.3.3, we discuss such a limitation and give as
illustration the use of StringBuilder/StringBuffer Java objects to create a string
query which are not dealt by our analyzer. Similarly, executed SQL queries
sometimes include input values given by the application users. This is the case
in highly dynamic applications. Thus, the static recovery of the associated
SQL queries may be incomplete or missing.

However, despite its limitations, our static analyzer reached good results in the
evaluation conducted in Section 4.3: we could extract queries for 71.5%-99% of
database accesses with 87.9%-100% of valid queries.
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Deletion or Renaming?

Another limitation which might slightly affect the results of our co-evolution his-
tory analysis is the detection of table/column renamings and deletions. When we
perform the database schema historization phase (detailed in Section 5.2.2), we
compare successive database schema versions. However, we could not make use
of SQL migration scripts between successive database versions. The unavailability
of such migration scripts makes the detection of table/column renamings more
complicated. Indeed, if table A is renamed as table B, there is no direct way to detect
it and, by default, our analyzer would consider that table A has been dropped while
table B has been created without keeping a link between both tables. In order to
mitigate this risk, we reused our automated support for implicit renaming detection
presented in Section 3.2.5. We obtained a list of potential table and column renam-
ings that we then manually validated/rejected. However, this technique may have
missed some renamings and in our co-evolution history analysis, we might still con-
sider that table A was dropped and table B was independently added. Nevertheless,
we believe that this silence could have only slightly affected the conclusions of our
historical analysis.

Database Schema Changes

In our what-if analysis approach, we decided to target 5 types of database schema
changes: deleting a table, renaming a table, deleting a column, renaming a column
and changing the type of a column. As explained, we focused on those types of
changes since they seem to be the most likely database schema changes to make
existing queries fail, in case the source code is not properly adapted. However, other
database schema changes could be considered in the future. For instance, creating or
updating a foreign key can cause program inconsistencies if the referential integrity
constraint is not satisfied by an executed query. In the future, we plan to extend the
scope of our approach to other types of database schema changes (adding/updating
foreign keys, merging/splitting tables, moving columns, etc.).

Dead Code

During the history analysis of Broadleaf, OpenMRS and OSCAR, we observed some
schema changes causing outdated database accesses and which are never fixed;
some code locations still allow developers to access removed or renamed schema
objects. However, in our analysis, we did not systematically verify if such code
locations actually represented dead code or were still reachable during the execution.
However, we argue that even dead code accessing outdated schema objects has to be
cleaned/fixed to make the program consistent. In the future, we plan to distinguish
active and dead code locations when generating recommendations.
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6.6 Concluding Remarks

In this Chapter, we presented a tool-supported approach supporting developers in
co-evolving databases and programs in a consistent manner. The approach, par-
ticularly designed for data-intensive Java systems, aims to identify inconsistencies
due to database schema changes by analyzing the system evolution history, and to
prevent inconsistencies to arise by providing developers with change propagation
recommendations.

We motivated the need for our approach by analyzing the co-evolution history of
the three open source systems. We observed that the task of manually propagating
database schema changes to the programs source code is not always trivial. We saw,
among others, that some database schema changes may require several versions to
be fully propagated to the source code. We could even find schema changes that
have never been (fully) propagated.

To overcome such problems to occur, we propose a what-if analysis approach,
that takes as input a given version of the system and a hypothetical database schema
change. Based on these inputs, it gives developers recommendations on how to
propagate the input schema change to the programs. The recommendations include
the exact source code locations that would be impacted by the schema change. The
approach is able to deal with multiple (co-existing) database access technologies,
namely JDBC, Hibernate and JPA.

We evaluated the accuracy of the returned recommendations by systematically
checking them against the actual co-evolution history of three Java open-source
systems. The results of this manual evaluation are very promising. The what-if
approach reached 99% of correct recommendations when applied to a randomly
selected, yet significant subset of schema changes.

As future work, we intend to extend the scope of our what-if analysis approach,
by considering a larger set of database schema changes. In particular, we target
schema changes that would require the adaptation of the program behaviour, such
as adding uniqueness or referential constraints.

Heterogeneity: an anti-pattern?

In Section 6.2, we analyzed the behaviour of developers (from three particular sys-
tems) when adapting programs to database schema changes. We studied how source
code and database co-evolved over time. Based on our observations, we can question
the suitability to have heterogeneity within a system. Several reasons can explain
heterogeneity:

(a) Developers’ preferences: according to her/his preferences, a developer can be
more comfortable with a particular access technology. In large development
teams, one could therefore observe the use of several technologies. Moreover,
the high turnover in teams and the arrivals of young developers in the project
can also encourage the introduction of new popular technologies.
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(b) Historical reasons: as observed in the OSCAR project, heterogeneity within a
project can be due to historical reasons. Initially, OSCAR only used JDBC to
access its database. Later, with the increasing popularity of ORM technologies,
Hibernate was introduced to complement JDBC. Later again, we observed the
introduction of JPA in order to fully replace Hibernate - developers seemed
to prefer the use of JPA annotations to map code objects to database objects
instead of XML configuration files. However, this attempt of migration failed
and today, the three technologies still co-exist.

(c) Using a technology to complement another one: whereas using ORM tech-
nologies (e.g., JPA/Hibernate) offer a lot of advantages, they are not always
sufficient to replace JDBC. In particular cases, ORM does not allow some
queries which are supported by JDBC. For instance, Hibernate does not sup-
port the insertion of multiple objects in a same table by using a single query;
instead, developers have to write separate queries to insert each object. Or
again, for some complex data, using ORM technologies instead of JDBC can
reduce performance. Hence, using JDBC as complement to an ORM technol-
ogy can be sometimes indispensable to palliate its drawbacks.

Using an ORM technology to access the underlying database can have several
advantages7; with JDBC, developers have to write code to map an object model’s
data representation to a relational data model. Thus, with JDBC, developers have to
manually manage the evolution of those mapped objects in case of schema changes.
ORM offers a flexible and powerful solution to map code objects to database objects.
In case of minor schema modifications, developers only need to change the defined
ORM mappings, reducing the development time and maintenance cost. In addition,
ORM also allows developers to avoid writing complex SQL queries; instead, ORM
provides simple and effective ways to perform a database manipulation task. How-
ever, as discussed above, JDBC can also palliate some ORM drawbacks; hence, the
use of both technologies, i.e., ORM and JDBC, can be useful.

Although our study revealed that the most heterogeneous system (i.e., OS-
CAR) was the most difficult to maintain, and that the less heterogeneous system
(i.e., Broadleaf) was the most maintainable in terms of propagation time (see Ta-
bles 6.1, 6.2, 6.3 and 6.4), we truly think that using several access technologies within
the same system can sometimes be a good solution, if developers are sufficiently
disciplined and properly trained. For instance, using JDBC, as complement to an
ORM technology (e.g., Hibernate or JPA) can constitute a good solution. Indeed,
ORM allows reducing the maintenance cost and JDBC can palliate some ORM draw-
backs. However, the price developers have to pay for heterogeneity is to be properly
disciplined and prepared, in order to deal with several access technologies at once,
in the context of program-database co-evolution.

7http://www.mindfiresolutions.com/mindfire/Java_Hibernate_JDBC.pdf
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6.6. Concluding Remarks

Roadmap

In this chapter, we have presented a what-if analysis approach giving developers
recommendations on how and where to propagate a hypothetical schema change
to the programs. We finally evaluated our approach and obtained very promising
results.

In the next chapter (Chapter 7), we present DAHLIA 2.0, a 3D visualization tool,
that allows developers to analyze the database usage in dynamic and heterogeneous
systems by visualizing the interactions between the application program and the
database.
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In this chaptera, we present DAHLIA 2.0, an extension of the visualization tool intro-
duced in Section 3.3.6. DAHLIA 2.0 allows developers to analyze the database usage in
dynamic and heterogeneous systems by visualizing the interactions between the appli-
cation program and the database. We secondly apply DAHLIA 2.0 to real-life systems
and illustrates the benefits of this visualization. Finally, we present a controlled exper-
iment for the empirical evaluation of DAHLIA 2.0; the objective is to experimentally
prove the suitability of our approach in the context of program-database co-evolution.

aThis chapter is an extension of our tool demo paper [Meurice and Cleve, 2016] published
in the proceedings of the 4th IEEE Working Conference on Software Visualization (VISSOFT
2016).

7.1 Introduction

Understanding the links between application programs and their database is useful
in various contexts such as migrating information systems towards a new database
platform, evolving the database schema, or assessing the overall system quality. How-
ever, data-intensive applications nowadays tend to access their underlying database
in an increasingly dynamic way. The queries that they send to the database server
are usually built at runtime, through String concatenation, or ORM frameworks. This
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level of dynamicity significantly complicates the task of adapting programs to an
evolving database schema. Indeed, we previously observed that manually recovering
the links between the source code and the database schema and understanding it
may prove complicated due to these higher levels of abstraction and dynamicity.

In this Chapter, we present DAHLIA 2.0, a visualization tool allowing develop-
ers to analyze the database usage in highly dynamic and heterogeneous systems.
DAHLIA 2.0 supports software comprehension and database-program co-evolution.

7.2 Visualization

S 

Historical 
Dataset 

Extraction 
[CHAP. 5] 

Data 
model 

Relational 
Database 

Versioning 
System 

Figure 7.1: The DAHLIA 2.0 architecture. DAHLIA 2.0 takes as input the historical
dataset, extracted as described in Chapter 5. This historical dataset must be stored
in a relational database implementing the data model presented in Section 5.2.2.
The database structures are defined in Section 5.3.2.

DAHLIA 2.0, whose architecture is depicted in Figure 7.1, requires as input the
historical dataset derived by our approach presented in Section 5.2. This dataset
must be stored in a database structured as we detailed in Section 5.3.2. The visu-
alization tool queries this database in order to compute and visualize information
related to the database usage of a subject DISS at a given version1.

We extended our visualization tool DAHLIA 1.0 to allow developers to analyze
the database usage of a system. While DAHLIA 1.0 only considers the database
schema history, DAHLIA 2.0 is now able to visualize the database usage by exploiting
the links between the program source code and the database. The main role of
DAHLIA 2.0 is to provide developers with a visual support to database-program
co-evolution by analyzing the dependencies between the code and the database;
such a visualization can help assessing the costs of a future system change (e.g.,

1Each of those features can be applied to any considered system versions; the latest version as well
as any older one.
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what would the code locations to maintain be if I delete this database table?). We list
below some of the novel features implemented in DAHLIA 2.02.

7.2.1 Visualizing the Database City

This feature reuses the 3D city-metaphor proposed by Wettel et al. [Wettel and Lanza,
2008a] that facilitates the visualization of very large database schemas. A database
table is represented as a 3D building. We use the building height, width and color
for representing database usage metrics. The user may select the metrics to affect
to each dimension/property and may thus customize the city according to his/her
needs. Table 7.1 summarizes the visual mappings affected to the database city.

(a) Building height: the building height is mapped to the number of columns.
This visual metric gives indications about the table size.

(b) Building width: the building width can be mapped to either (1) the number
of database queries sent from the source code that access the table, or (2)
the number of code locations accessing the table. These metrics give indi-
cations about the table manipulation within the source code. It provides an
estimation of the required effort to co-evolve the code in case of future table
modifications.

(c) Building color: a color is affected to each building. A building can be colour-
ized according to either (1) the technologies accessing the table (e.g., a par-
ticular color for all the database tables accessed by a given technology), or
(2) the ORM mappings defined on the table (e.g., a particular color for all the
database tables that are mapped to the code via an ORM). Those visual metrics
give indications about the technological manipulation of each table.

That kind of metrics permits developers to instinctively detect the sensitive
database parts intensively linked (accessed) to the code. The user is free to affect
any width metric to the building height and vice-versa. Table 7.1 only represents a
"recommended" metric assignment.

Figure 7.2 depicts an example of 3D database city that one can visualize within
DAHLIA 2.0. In this example, each building (table) has a height denoting the number
of columns, a width representing the number of accessing queries sent from the
source code, and a color representing the database access technology. As illustrated,
the user can visualize the corresponding 2D table form.

7.2.2 Visualizing the Code City

That feature proposes a visualization of the program source code similar to [Wettel
and Lanza, 2008a] by representing a file as a 3D building. The novelty we propose

2All the features of DAHLIA 1.0 are included in DAHLIA 2.0. We only present in this Section the new
features. The former ones are detailed in Section 3.3.6.
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Metrics Indications

Concepts Concepts

Properties

visual
mapping

#Columns

#DB Accesses

#DB Accessing
Code Locations

TableBuilding

Access Techno.

ORM Mapping

Size

DB
Usage

Height

Width

Color

DB SchemaCity

Table 7.1: The visual mappings affected to the database city.

Figure 7.2: A 3D database city as visualized within DAHLIA 2.0. The right panel
shows the 2D form of a selected table.

is also into the metrics affected to the building height, width and color. Table 7.2
summarizes the visual mappings affected to our code city.

(a) Building width: the building width can be mapped to either the number of
lines of code within the given file, or the number of methods/functions de-
fined in the given file. Those metrics give indications about the size of each file.

(b) Building height: the building height can be mapped to either (1) the number
of queries sent from the given file, (2) or the number of locations accessing
the database in the given file, or (3) the number of tables accessed by the
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given file. Those metrics give indications about the database usage within the
source code; it permits the intuitive detection of files intensively linked to the
database.

(c) Building color: a color is affected to each building. A building can be coloured
according to either (1) the database access technologies used within the given
file (e.g., a particular color for the files using a given database access technol-
ogy), or (2) the ORM mappings defined in the given file (e.g., a particular color
for the files defining some ORM mappings). Those metrics give indications
about the technological distribution in the source code.

Here again, that kind of metrics will allow the immediate detection of sensitive
code parts intensively linked to the database. The visual metrics can be chosen by
the user. Moreover, the latter is free to affect any width metrics to the building height
and vice-versa. Table 7.2 only represents a "recommended" metric assignment.

Metrics Indications 

Concepts Concepts 

Properties 

visual 
 mapping 
 

 
  #DB Accesses 

 #DB Accessing 
 Code Locations 

File Building 

 Access Techno. 

 ORM Mapping 

Size 

DB 
Usage 

Width 

Height 

Color 

Code City 

 #Lines of Code 

 #Methods 

 #Accessed Tables 

Package Package 

Table 7.2: The visual mappings affected to the code city.

Figure 7.3 shows an example of 3D code city as visualized within DAHLIA 2.0.
Each building - a Java file in that case - has a height, i.e., the number of locations
accessing the database), a width, i.e., the number of methods in the file, and a
color for the database access technology(ies) used in the file (black = none, green =
Hibernate, blue = JDBC, mix = JDBC & Hibernate).

7.2.3 Visualizing the links between the Database and Code city

This feature proposes a dual visualization; the database and code cities are displayed
side-by-side according to the metrics chosen by the user. It enables the user to
assess the costs of a future database schema change or a code refactoring step. The
user can click on a particular file and visualize which part of the database schema
is accessed. The results of a click on a file will be (1) the highlighting of all the
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Figure 7.3: A 3D code city as visualized within DAHLIA 2.0. The right panel shows
information about a selected file, i.e., the access locations, the accessed tables and
the ORM mappings.

accessed tables and (2) the accurate detection of all the code locations accessing
them. Figure 7.4 depicts the database and code cities as visualized within DAHLIA
2.0. The database (left) and code (right) cities are side-by-side. The green tables are
tables with Hibernate mapping, black tables are tables without any ORM mappings.
The table height represents the number of columns while the table width is the
number of SQL queries accessing it. The green files are files using Hibernate, blue
files are files using JDBC and black files do not access the database. The file height
represents the number of accessed tables while the width represents the number
of locations accessing the database. Figure 7.4 illustrates the following scenario:
the user plans to refactor the HibernateConceptDAO Java file and wishes to assess
the costs of that evolution phase with help of DAHLIA 2.0. The user clicks on the
HibernateConceptDAO file (highlighted building in the right city depicted in cyan).
DAHLIA automatically and instantly highlights (cyan color) all the database tables
(left city) accessed by that file. By this way, the user can directly have an estimation
of the required effort to perform that evolution phase.

The reverse operation is also possible: the user can click on a particular table in
order to highlight the files accessing the selected table. It provides an assessment of
the impact of a future table modification.

7.2.4 Jumping into the code

In addition to the 3D support, the tool can list, on its right panel, a large set of infor-
mation. For instance, the user can decide to list (1) all the tables accessed by a given
file, (2) all the precise code locations (precision in terms of line of code) in a given
file which allows accessing the database, (3) all the (SQL) queries accessing a given
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Figure 7.4: Database (left) and Code (right) cities side-by-side as visualized within
DAHLIA 2.0. The right panel shows information about a selected file.

table (as well as their actual value, the accessed database objects and their execution
location in the code), etc. Thanks to this information panel, the user has an accurate
report on the database usage. Moreover, that panel allows the user to directly jump
into the precise code locations that will require some modifications/adaptations in
case of code/database change.

7.2.5 Visualizing the database-program dependencies within a circular
view

This feature uses a circular visualization. Unlike the 3D visualization, this mode
allows to directly visualize the dependencies between the program source code and
the database in terms of intensity. Precisely determining the dependencies between
a table and a file or between a table and another table can considerably help the
user to assess the future impact of any change on the system. Figure 7.5 depicts two
examples of circular visualization.

(a) Visualizing the dependencies between the source code files (represented in
red) and the database tables (represented in green) in terms of access loca-
tions. The higher the number of locations in the file accessing the table, the
darker the color.

(b) Visualizing the dependencies between the tables themselves in terms of close-
ness; namely, two tables are close when they appear together in a same SQL
query. The higher the number of queries where the two tables appear together,
the closer they are and thus, the darker the color.
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(a) Dependencies between files and tables. (b) Dependencies between tables.

Figure 7.5: Circular views as visualized within DAHLIA 2.0. Red bullets represent
files, while green ones depict tables. Darker the color stronger the dependency.

System Description LOC Tables Accesses

Bfit Library content management system 32 839 38 87
Broadleaf E-commerce framework 254 027 179 930
DAHLIA Visualization tool 124 888 26 273
Liferay Enterprise web platform 2 398 861 145 4 617
MusicBrainz Encyclopedia of music information 4 097 286 70
Oopms Online project management suite 260 536 188 1 604
OpenEMM Web-based enterprise application 102 529 68 9 162
OpenMRS Medical record system 301 232 88 951
OSCAR Medical record system 2 054 940 480 13 822
QuanLyVatTu Commerce management system 13 589 17 244
Sgaf Billing management system 15 440 50 112

Table 7.3: Size metrics of the studied systems.

Moreover, the user can decide to only select a particular table/file and display its
dependencies with the other objects.

7.3 Application to Real-Life Systems

We used DAHLIA 2.0 to visualize 11 real-life systems. Table 7.3 gives some metrics
pertaining to the studied systems. In terms of lines of code, the size of these system
varies: we selected small (< 10KLOC), medium and large systems (> 2000KLOC).

Figures 7.7, 7.8, 7.10, 7.9, 7.11, 7.12, 7.13, 7.14, 7.15, 7.16 and 7.17 depict the
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dual visualization (database and code cities) with DAHLIA 2.0 of, respectively, Bfit3,
Broadleaf4, DAHLIA itself, Liferay5, MusicBrainz6, Oopms7, OpenEMM8, OpenMRS9,
OSCAR10, QuanLyVatTu11 and Sgaf12.

The database city (left city) uses several metrics. The building height represents
the number of columns; the building width represents the number of code locations
accessing the table; the building color represents the technology(ies) accessing the
table (the color is affected according to the legend depicted in Figure 7.6).

                   JPA 
 
 
 
 
Hibernate                    JDBC 

Figure 7.6: Legend of the colourization used within DAHLIA 2.0. Each technology
and intersection of technologies has a particular color. The objects not concerned
by any technologies are depicted in black.

The code city (right city) uses several metrics. The building height represents the
number of code locations within the file accessing the database; the building width
represents the number of lines of code; the building color represents the database
access technology(ies) used within the file (the color is affected according to the
legend depicted in Figure 7.6).

Each system has its own characteristics and architecture.sBfit: Bfit only uses Hibernate as database access technology. The majority
of tables (left city) are manipulated/accessed within the source code; only a
few ones remain unaccessed (black tables). Concerning the code (right city),
all the database-related files are into the same package, which decreases the
time search to locate the accessing code locations in case of database schema
modifications.

3https://github.com/yalelibrary/bulk-fcrepo-import (date:24/03/2016)
4https://github.com/BroadleafCommerce/BroadleafCommerce (date:31/03/2015)
5https://github.com/liferay/liferay-portal (date:12/06/2010)
6https://github.com/lastfm/musicbrainz-data (date:31/08/2015)
7https://github.com/Ankithukral/oopms (date:24/08/2012)
8https://sourceforge.net/projects/openemm/files/ (date:18/11/2009)
9https://github.com/BroadleafCommerce/BroadleafCommerce (date:10/04/2015)

10https://github.com/scoophealth/oscar/ (date:14/12/2014)
11https://github.com/free-development/QuanLyVatTu (date:07/10/2015)
12https://github.com/organizationFreeLance/sgaf (date:12/06/2016)
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Figure 7.7: Visualization of Bfit with DAHLIA 2.0.

Figure 7.8: Visualization of Broadleaf with DAHLIA 2.0.

Figure 7.9: Visualization of DAHLIA with DAHLIA 2.0.
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Figure 7.10: Visualization of Liferay with DAHLIA 2.0.

Figure 7.11: Visualization of MusicBrainz with DAHLIA 2.0.

sBroadleaf: Broadleaf only uses JPA to access its database. One notices that a
lot of tables are unaccessed. Concerning the code, its organization seems in
disorder with dozens of packages containing (sometimes isolated) database
access files.sDAHLIA: DAHLIA only uses JDBC to access its database. All the tables are
accessed within the source code. Concerning the source code, only a dozen
of files manage the communication with the database. One observes that the
majority of the access points are located in three main files.sLiferay: Liferay uses Hibernate and JDBC together to access its database.
However, one notices that Hibernate is the dominant technologies in terms
of accessed tables and database access code locations. It seems that JDBC is
used to complement Hibernate. One also observes a certain discipline in the
database-related source code files; there is no "mixed" files containing both
Hibernate and JDBC locations. JDBC and Hibernate parts remain separated.
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Figure 7.12: Visualization of Oopms with DAHLIA 2.0.

Figure 7.13: Visualization of OpenEMM with DAHLIA 2.0.

It is also interesting to observe that the largest files, in terms of lines of code,
are the database access files. Moreover, some database access files are quite
massive in terms of number of access locations (building height); detecting
those massive files allows us to spot the sensitive files, intensively linked to
the database.sMusicBrainz: MusicBrainz is a small-size system. It uses Hibernate as unique
access technology. The majority of the tables are unaccessed; this is explained
by the fact that MusicBrainz is designed to manage an encyclopedia of music
information. This encyclopedia, stored in a relational database, is used by
several other applications - each one for a specific objective. MusicBrainz
is meant for read-only access to this database and only uses a subset of the
database schema.sOopms: Oopms uses Hibernate and JDBC to access its database. However,
both technologies are totally separated in the source code files and packages
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Figure 7.14: Visualization of OpenMRS with DAHLIA 2.0.

Figure 7.15: Visualization of OSCAR with DAHLIA 2.0.

(no mixed files containing both technologies). The same trend is observed
concerning the technological distribution across the schema; each table is
accessed by, at most, one technology. Moreover, one observes that among the
largest files, some of them are database access files. In general, one sees that
the database access files are quite scattered, with very few of them in a same
package.sOpenEMM: OpenEMM uses JDBC and Hibernate as access technologies.
There is only a few unaccessed tables. It seems that JDBC is the main used
technology in terms of technology distribution across the database schema
as well as the source code files. However, one can observe the presence of a
"mixed" file using both Hibernate and JDBC to query the database. This kind
of observations might lead to a first awareness that refactoring this file could
be recommended.sOpenMRS: OpenMRS makes also use of Hibernate and JDBC. Almost all the
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Figure 7.16: Visualization of QuanLyVatTu with DAHLIA 2.0.

Figure 7.17: Visualization of Sgaf with DAHLIA 2.0.

tables are accessed in the code. Moreover, some of them are accessed by both
technologies. Similarly, one observes the existence of a "mixed" file using
JDBC and Hibernate. Here again, this detection might be a signal for the
necessity of refactoring. Furthermore, this file has an important number of
access code locations, which motivates it again. Unless the code size, the
database access files are restricted to a limited number of packages, which
proves the presence of a certain order in the code organization.sOSCAR: OSCAR uses together JDBC, Hibernate and JPA to access its database.
As discussed in Section 5.4.2, the presence of the three technologies is due
to historical reasons and failed attempts to migrate from a technology to
another. Because of those reasons, the OSCAR architecture is in complete
disorder. Some tables are accessed by several technologies - sometimes, the
three technologies! - and this disorder is mainly observable within the source
code itself: some packages and files contain several access technologies, which
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clearly depicts a certain lack of discipline in the code organization. One
can also detect some huge files in terms of access code locations. This dual
visualization of the OSCAR architecture proves the growing unmaintainability
of the system.sQuanLyVatTu: QuanLyVatTu only accesses its database via Hibernate. This
system is a small-size system. Moreover, all the database access files are into
the same package and each of them has a relatively low number of access
locations.sSgaf: Sgaf has an architecture very similar to QuanLyVatTu, using Hibernate
as only access technology. The only difference is the important number of
unaccessed tables. All the database access files are into the same package.

7.4 Evaluation

In this Section, we present a controlled experiment that empirically evaluates
DAHLIA, our visualization approach. The objective is to experimentally prove the
suitability of our approach in the context of program-database co-evolution. The ex-
periment quantitatively measures how DAHLIA 2.0 influences (1) the time required
to achieve typical comprehension tasks pertaining to the program-database com-
munication, and (2) the correctness of the answers related to those comprehension
tasks.

7.4.1 Hypothesis Formulation

We define two research questions underlying our experiment:

sRQ1: Does DAHLIA 2.0 reduce the time needed to complete the tasks?

sRQ2: Does DAHLIA 2.0 increase the correctness of the tasks?

The null hypotheses corresponding to those two research questions are formu-
lated as below:

sH01: there is no difference in the completion time for different tasks between
participants using DAHLIA 2.0 and those ones who do not use DAHLIA 2.0.

sH02: there is no difference in the correctness of responses between partici-
pants using DAHLIA 2.0 and those ones who do not use DAHLIA 2.0.

Therefore, the alternative hypotheses are formulated as below:

sH11: there is a difference in the completion time for different tasks between
participants using DAHLIA 2.0 and those ones who do not use DAHLIA 2.0.
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using DAHLIA 2.0 and those ones who do not use DAHLIA 2.0.

7.4.2 Variable Selection

The purpose of the experiment is to show whether DAHLIA 2.0 provides better sup-
port in solving program-database communication comprehension tasks, compared
to the baseline. Our experiment has one independent variable: the tool used to
solve the tasks. In addition, our experiment has two dependent variables, i.e., the
completion time and the correctness.

The choice of a baseline. We looked for a baseline on which we could fairly compare
DAHLIA 2.0, unfortunately we could not find a single tool visualizing the program-
database communication at a precision level similar to DAHLIA 2.0.
Moreover, CodeCity [Wettel and Lanza, 2008a] cannot represent a fair baseline since
it does not handle/visualize the interactions between the database and programs.

In one concern of fairness, we also rejected Eclipse IDE as baseline. Indeed, we
are intimately convinced that navigating through the source code with Eclipse to
recover and understand the program-database communication is not a conceivable
solution; dynamically generated queries and ORM frameworks considerably compli-
cate the task of manually identifying and recovering database accesses within the
source code. Therefore, opting for Eclipse as baseline would bias the experiment.
Instead, in order to avoid to confer an unfair data advantage to the subjects in the
experimental group, we decided to provide the control group with data tables con-
taining the metrics required to solve the tasks. Those data are stored in Excel sheets
allowing a simple data exploration. Those Excel sheets are available in Appendix A.

The object system. To evaluate our approach, we selected OpenMRS as object
system. We truly think that OpenMRS represents a well-suited real-life system to
perform this experiment, in terms of size (> 300 KLOC, 1,426 java files and 88 tables)
and used database access technologies (JDBC & Hibernate).

We performed our extraction process as described in Section 5.3.1 and stored
the extracted data in a database structured as detailed in Section 5.3.2. From this
database, we then automatically fulfilled the Excel sheets with the metrics necessary
to solve the experiment tasks.

7.4.3 Tasks Design and Participant Selection

We defined a set of eight comprehension tasks. The tasks are described in Table 7.4.
In our case, a task consists of answering a question.

After a first pilot study involving three participants (two PhD students and one
post-doc), we conducted the experiment with a total of 48 participants: all partic-
ipants are students in our university, either in their last year of their Bachelor (B),
Master (M) or evening program studies (E). We randomly distributed the students in
two groups, i.e., a group of students who will solve the tasks with DAHLIA 2.0 and a
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Question Description

Q1 Which technology (JDBC, Hibernate or JPA) accesses the biggest
number of database tables?

Q2 How many files use several technologies (>1) to access the database?

Q3 How many files access the database table named users?

Q4 How many database tables are accessed by the file named
HibernateHL7DAO.java?

Q5 How many database tables are accessed by several technologies (>1)?

Q6 How many database tables are not accessed at all?

Q7 Which database table is accessed by the biggest number of
code locations?

Q8 Which file accesses the biggest number of database tables?

Table 7.4: Comprehension tasks.

group of students without DAHLIA 2.0 (with Excel). Table 7.5 shows the distribution
of the participants of each degree in the two groups.

Students Groups
DAHLIA 2.0 Excel

Bachelor (B) 6 8
Master (M) 6 5
Evening program (E) 13 10

Total 25 23

Table 7.5: Participations distribution.

7.4.4 Data Collection

During our experiment, we collected different data.

Expertise level of Excel. Before the experiment, we collected experience with Excel
of each participant belonging to the control group (i.e., using Excel). We defined
three possible levels: (1) I never use Excel, (2) I have a basic knowledge of Excel and
(3) I am able to use formulas/functions in Excel.

Timing Data. To time participants, we implemented our own timer integrated in
the questionnaire and running on the participant’s computer. We logged the ac-
curate time needed to realize each task. We made the deliberate choice to hide
the remaining time in order to avoid stress effects. However, the participant can
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decide anytime to display the remaining time by clicking on a button. Whenever
a participant was unable to finish a task in the allotted time (10 minutes for each
task13), the application displays a timeout message and invites the participant to
pass to the next task (and the timer is then reset).

Correctness Data. To obtain an oracle allowing us to evaluate the correctness of the
answers given by the participants, we queried the database used to generate the
Excel sheets and used as input of DAHLIA 2.0, and found out the correct answer to
each task. Secondly, we manually and blindly - the experimenter did not know if the
participant belongs to the control group or not - verified the correctness of each task
performed by each participant. We finally graded the participants; the minimum
grade is 0, while the maximum is 8 (number of tasks to perform).

The raw measurements of completion time and correctness are available in
Appendix A.

7.4.5 Results

Before choosing the suitable statistical test to apply, several assumptions need to be
discussed:

(a) Independence of observations: the participants were randomly assigned to
one of the two groups. The data of each group were independently collected
and are therefore unpaired. The assumption of independence of observations
is thus met.

(b) Normality of the dependent variable: we tested the normality of completion
time and correctness using the Shapiro-Wilk test [Shapiro and Wilk, 1965].
Based on the null hypothesis H0 = data are normally distributed, we applied
the Shapiro-Wilk test to completion time and correctness. We obtained a
p-value equal to, respectively, 0.0347 and < 0.0001. Since both are lower than
the significant level 0.05, the null hypothesis is rejected.

(c) Testing outlying observations: since the hypothesis of a normal distribution
is rejected, a second test, i.e., the Grubbs’ test [Grubbs, 1950], is required to
verify if the null hypothesis H0 = there are no outlier data can be rejected. After
applying the Grubbs’ test to the completion time and correctness, we obtained
a p-value equal to, respectively, 0.097 and 0.310. Since both are greater than
the significant level 0.05, the null hypothesis cannot be rejected.

Based on the design of our experiment and our above observations, the suitable
non-parametric test for hypothesis testing is the Mann-Whitney test.

After applying the Mann-Whitney test [Mann and Whitney, 1947] to the com-
pletion time and the correctness, we obtained a p-value equal to, respectively, <

13We set this time limit on the basis of our observations made while conducting the pilot study; we
claim that 10 minutes are more than sufficient to answer each question.
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Completion Time (seconds) Correctness (score)
DAHLIA 2.0 Excel DAHLIA 2.0 Excel

mean 462.68 797.57 7.56 7.04
difference -41.99% +7.33%
min 243 461 6 5
max 809 1361 8 8
median 424 703 8 7
stdev 149.79 219.75 0.71 0.98

Table 7.6: Statistics related to completion time and correctness.

0.0001 and 0.0435. Since both values are lower than the significant level 0.05, our
two initial null hypotheses (1) H01 = there is no difference in the completion time
for different tasks between participants using DAHLIA 2.0 and those ones who do not
use DAHLIA 2.0, and (2) H02 = there is no difference in the correctness of responses
between participants using DAHLIA 2.0 and those ones who do not use DAHLIA 2.0
can be rejected.

The statistics related to completion time and correctness are presented in Ta-
ble 7.6.

7.4.6 Result Summary

Completion time. The data allows us to reject the first null hypothesis H01 in
favour of the alternative hypothesis H11, which states that the tool impacts the time
required to complete the tasks. We observed that DAHLIA 2.0 enabled a completion
time reduction of 41.99% over Excel. This result is statistically significant.

Correctness. The data also allows us to reject the second null hypothesis H02 in
favour of the alternative hypothesis H12, which states that the tool impacts the
correctness of the solutions to the tasks. We observed that DAHLIA 2.0 enabled an
increase in correctness of 7.33% over Excel. This result is statistically significant.

The main effect of the tool on the completion time and correctness is illustrated
in Figure 7.18

Task Analysis. Another objective of our experiment was to identify the tasks for
which DAHLIA 2.0 provides an advantage over the baseline. Figure 7.19 shows the
performance for each task (T), in terms of correctness (the average percentage of
correct answer) and completion time (average time to solve the task).

It is not surprising to observe a quite good general correctness for Excel; indeed
Excel provides functions (e.g., sum, max, ...) to find precise answers. Yet, Excel
obtains a better correctness with tasks T3 and T4 (even if the correctness for T3 and
T4 with DAHLIA 2.0 is good too). The correctness for each other task is better with
DAHLIA 2.0.
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Figure 7.18: Box plots for completion time and correctness.

The greatest difference to observe between the two groups is about the average
completion time per task. Except for T3 which is almost similar, DAHLIA 2.0 con-
stantly outperforms Excel. It indicates that DAHLIA 2.0 provides users with faster
functionalities to access necessary information.

7.4.7 Threat to Validity

Internal Validity

The internal validity is the degree to which the results are attributable to the inde-
pendent variable and not some other uncontrolled factors.

Participants. For this experiment, we selected students from last year of Bachelor,
evening program and Master. Their participation was not mandatory, but voluntary.
Since every participant already followed the course of database engineering, we
claim that they all have the background enough to understand and answer the ques-
tionnaire. However, we cannot consider that all students had enough competencies
in the field of program comprehension. Secondly, students’ motivation is another
important factor to consider; whereas the students were voluntary, their (lack of)
motivation before and during the experiment could influence the results.

Baseline. As we looked for a fair baseline on which we could compare DAHLIA 2.0,
we rejected Eclipse IDE. Indeed, we consider that the time necessary to manually (1)
detect database accesses from the source code and (2) recover the exact executed
query value are time-consuming tasks and would confer a considerable (and unfair)
advantage to DAHLIA 2.0. Whereas our choice of selecting Excel as baseline could
affect the performance of the control group, we are convinced that this baseline was
chosen on a fair basis.

166



7.4.7. Threat to Validity

0

50

100

150

200

250

T1 T2 T3 T4 T5 T6 T7 T8

Completion Time (seconds)

DAHLIA

EXCEL

0

20

40

60

80

100

T1 T2 T3 T4 T5 T6 T7 T8

Correctness (%)

DAHLIA

EXCEL

Figure 7.19: Average correctness (on the top) and completion time (on the bottom)
per task.

Tasks. The choice of tasks may have been biased to the advantage of DAHLIA 2.0.

Training. We only trained the participants using DAHLIA 2.0 to answer the question-
naire and this may have influenced the experiment’s results. However, we presented
the Excel sheets and described their structures to the control group before starting
the experiment. Moreover, answering the questionnaire with Excel only requires
basic knowledge of Excel and therefore, we think that training the control group was
not necessary.

External Validity

The external validity is the degree to which the results of the experiment can be
generalized.
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Used object system. The representativeness of the system we chose to perform our
experiment may be considered as a threat. However, this real-life open-source sys-
tem is designed for a real-world domain application (i.e. health care in developing
countries) and has a realistic size and complexity.

Participants. The representativeness of the selected students is a potential threat.
Indeed, undergraduate students may not be considered as fully representative pop-
ulation of the target profile of potential users of DAHLIA 2.0.

Tasks. The representativeness of the tasks is also a potential threat; the questions
may not reflect real program comprehension tasks — it is possible that other kinds
of questions matter more than the ones we considered.

7.5 Concluding Remarks

We presented DAHLIA 2.0, a novel visualization tool that allows us to analyze the
database usage of dynamic and heterogeneous systems by visualizing the links
between the source code and the database. It aims to support database-program
co-evolution in a DISS. Our tool can deal with systems using several database access
technologies together like ORM. The DAHLIA visualization relies on a data model
detailed in Section 5.2.2 and could become technology-independent with some
minor adaptations.

Finally, we presented a controlled experiment aiming to quantitatively evaluate
how DAHLIA 2.0 can influence completion time and correctness of performing
comprehension tasks pertaining to the program-database communication. The
results of the experiment indicate that DAHLIA 2.0 leads to an improvement of
completion time and correctness. The obtained results are statically significant,
which means that our visualization approach is able to help developers in the context
of program-database co-evolution. In particular, we observed that the DAHLIA
group (1) spent 41.99% less time to achieve the tasks and (2) reached a higher level
(+7.33%) of correctness when answering the questions.

Roadmap

In this chapter, we have presented DAHLIA 2.0, a 3D visualization tool allowing
the analysis of the database-program interactions. We also presented a controlled
experiment for the empirical evaluation of DAHLIA 2.0 and observed that our visu-
alization approach is able to help developers in the context of program-database
co-evolution.

The next chapter (Chapter 8) presents three direct applications of the approaches
presented in the previous chapters to other fields.
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This chaptera presents three direct applications of the approaches presented in the pre-
vious chapters, namely (1) concept location for DISS, (2) database reverse engineering
and (3) database schema evolution in schema-less NoSQL data stores.

aThis chapter extends three papers. The first one [Nagy et al., 2015] was published in the
proceedings of the 22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2015). The second paper [Meurice et al., 2014] was published in the
proceedings of the 30th European Conference in Software Maintenance and Evolution (ICSME
2014). The third paper [Meurice and Cleve, 2017] was published in the proceedings of the 24th
International Conference on Software Analysis, Evolution and Reengineering (SANER 2017).

8.1 Introduction

This Chapter illustrates the benefits of different approaches presented in the previ-
ous chapters. We show the benefits of our approaches by introducing three direct
applications. The first application is static analysis solution for a typical concept
location problem for data-intensive systems (see Section 8.2); the second application
is a database reverse engineering process to recover implicit referential integrity
constraints in legacy systems (see Section 8.3); the third application is an auto-
matic approach supporting schema evolution in schema-less NoSQL data stores
(see Section 8.4).
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8.2 Where Was This SQL Query Executed? A Static Concept
Location Approach

In software engineering, concept location is the process of identifying where a spe-
cific concept is implemented in the source code of a software system. It is a very
common task performed by developers during development or maintenance, and
many techniques have been studied by researchers to make it more efficient. How-
ever, most of the current techniques ignore the role of a database in the architecture
of a system, which is also an important source of concepts or dependencies among
them.

As illustration, there are several forum questions and blog posts like “Finding
the origin of a Query”1 and “Backtrace from SQL query to application code”2, which
address this problem of identifying the exact code location where a query is exe-
cuted. Typical scenarios for this task are when queries need to be optimized for
performance, or when they cause failures (e.g., a syntactic error or a deadlock issue).
But, because of the lack of static tools, a dynamic solution is almost always recom-
mended. Indeed, dynamic techniques exist to trace the query on the database or
client side. However, dynamic analysis cannot help us in certain situations. Suppose
that the user of the application experiences performance issues at the database;
she/he identifies the query which causes the performance drop back in the log files
of the database and sends a bug report. Since the problem occurred in the database
and was reported by it (the client was not directly affected), we do not have a stack
trace in the bug report. How can we determine where the query was prepared in the
source code? We must reproduce everything exactly as the user did, which might
prove impossible if we depend on the (possibly confidential) data stored in the
database. In such situations, a static approach seems more appropriate.

Therefore, we adapted our static analysis solution presented in Chapter 4 for
addressing a typical concept location problem for data-intensive systems: "where
was this query executed?". Specifically, we adapted our static technique for identi-
fying the exact source code location from where a given SQL query was sent to the
database server. This task can become really hard as the complexity of a system
grows, especially in the case of languages where queries are constructed dynamically.
For example, simple grep or code search techniques are not sufficient for systems
where thousands of queries are constructed via string operations and methods deep
in the call hierarchy. Moreover, persistence frameworks (like Hibernate and JPA) can
hide the query construction from developers, further complicating the debugging of
such issues.

8.2.1 Approach

Figure 8.1 shows the main steps of our concept location approach. The process
starts with the developer who specifies the SQL query that she/he would like to find
in the source code of an application. Then we analyze the source files including the

1http://java.dzone.com/articles/hibernate-debugging-where-does
2http://stackoverflow.com/questions/12631315/backtrace-from-sql-query-to-application-code
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Figure 8.1: Overview of the approach, where the main steps are in numbered boxes
with their respective inputs and outputs.

1 List<Book> getBook(int code) {
2 String where="WHERE b.code=:code";
3 Query q = s.createQuery("b.title FROM Book b" + where);
4 q.setParameter("code", code);
5 List<Book> books = q.list();
6 return books;
7 }

Listing 8.1: Example of HQL query construction.

database schema by executing our approach presented in Section 4.2. The result is a
set of matching queries and the locations of the method invocations that send them
to the database.

Database Access Extraction. This step aims at analyzing the application source
code for detecting and extracting SQL queries sent to the database server via JDBC,
Hibernate and JPA. This step is ensured by the JDBC/Hibernate/JPA analyses of
our static analysis approach, presented in Section 4.2. This step results in a set of
database accesses. Each Hibernate and JPA access is translated in its corresponding
SQL form.

Listing 8.1 shows a typical method that constructs a HQL query to list some books
in a database, and Listing 8.2 shows the query string that we can extract from this
method. Listing 8.3 shows the corresponding SQL form obtained after translation.

SQL Parsing. Once we have all the potential data access points and all the native or
translated SQL queries, the next step is to compare all these with the query that the
developer is interested in. We perform this comparison at the level of Abstract Syntax
Trees (ASTs) in order to have more flexibility for the comparison and to be able to
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1 BookDAO.java(164): "b.title FROM Book b WHERE b.code=@@null@@"

Listing 8.2: HQL query extracted from the code sample in Listing 8.1.

1 BookDAO.java(164): "SELECT b.title FROM book_tab b WHERE b.code=@@null@@"

Listing 8.3: A SQL query translated from the HQL query in Listing 8.2.

handle unresolved query fragments. We reuse the SQL parsing process detailed in
Section 4.2.2, which is able to parse statements with unresolved query fragments. In
Figure 8.2, we can see an AST constructed from the statement given in Listing 8.3.

SELECT

Identifier

name: b.title

Alias

name: b

Columns From

Identifier

name: book_tab

Expression

Binary

kind: equals

Identifier

name: b.code

Left Right

Where

Unresolved 

fragment

Figure 8.2: Illustration of the AST of the query in Figure 8.3

Query Matching. The goal here is to find those queries that we extracted and have
ASTs matching the AST of the query searched by the developer. This can be viewed as
a clone matching technique where we attempt to find clones between the extracted
and searched queries.

When we compare the ASTs, we follow our recursive definition of the matching
relation matchexact (ti , t j ) between ti and t j trees, which we define as true if all the
attributes of the root node of ti (r oot (ti )) (including the type of the node) are equal
to the attributes of r oot (t j ), and for all the tik subtrees of r oot (ti ) and t jk subtrees
of r oot (t j ), matchexact (tik , t jk ).

To handle the unresolved fragments, ‘unresolved fragment’ nodes should match
any other nodes or subtrees. That is, we define match(ti , t j ) as true if either ti or t j

is a ‘unresolved fragment’ node or matchexact (ti , t j ) is true.
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Figure 8.3 shows a sample AST which is in match relation with the AST in
Figure 8.2. All the nodes are exactly the same, except the Literal node, which
matches the ‘unresolved fragment’ node in the tree.

SELECT

Identifier

name: b.title

Alias

name: b

Columns From

Identifier

name: book_tab

Expression

Binary

kind: equals

Literal

value: 123

Identifier

name: b.code

Left Right

Where

Figure 8.3: Example AST matching the AST in Figure 8.2

8.2.2 Evaluation

We implemented our approach for systems written in Java and accessing a database
via JDBC/Hibernate/JPA. To evaluate it, we tested the implementation on OSCAR
and OpenMRS. We claim that the size and the architecture of these systems allow us
to demonstrate the efficiency of our approach in a real-world environment.

Query Extraction and SQL Parsing. Table 8.1 shows the number of SQL queries that
we successfully extracted and parsed from the source code of OSCAR and OpenMRS.
Both systems follow the Data Access Object (DAO) pattern (but not strictly), hence
most of the queries are prepared and sent to the database from DAO classes. It can
be seen, however, that OSCAR mixes the usage of JDBC, Hibernate and JPA, while
OpenMRS uses Hibernate more extensively. The column of successfully parsed
statements shows the number of queries for which we could successfully construct
an AST. Queries that we cannot parse might contain syntactic errors or language
constructs that our parser cannot handle in its current implementation state.

To play the role of the developer who seeks a problematic query, we collected
SQL queries from execution traces of usage and testing scenarios. Both OSCAR and
OpenMRS have a test database available in their source repository, and their devel-
opers intensively use unit tests for basic functionalities and DAO implementations
too. OSCAR and OpenMRS have 1,311 and 3,258 test cases respectively, in their
unit testing framework. We executed all these test cases and used log4jdbc to trace
database usage. For all the collected SQL queries, we saved the actual stack trace too.
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System LOC Tables JDBC Queries HQL/JPQL Queries
Extracted Parsed Extracted Parsed

OSCAR 2 054 940 480 123 661 123 298 32 456 9 005
OpenMRS 301 232 88 77 73 687 151

Table 8.1: Size metrics of the systems and the number of queries extracted and
successfully parsed

Then we filtered queries (based on their traces) that were sent to the database via
JDBC or Hibernate HQL/JPQL and we tried to locate them with our method.

System Test Scenario Q TP TPR FP FPR Max Avg Var

OSCAR Billing 103 102 0.99 0 0.00 19 9.97 8.49
OSCAR Change Password 3 2 0.66 0 0.00 2 1.50 0.50
OSCAR First Login 3 2 0.66 0 0.00 2 1.50 0.50
OSCAR New Demographic 3 2 0.66 0 0.00 2 1.50 0.50
OSCAR Request Consultation 101 100 0.99 0 0.00 19 1.50 10.14
OSCAR Send Message 5 3 0.60 0 0.00 2 1.33 0.44
OSCAR Update User 3 2 0.66 0 0.00 2 1.50 0.50
OSCAR Writing Prescriptions 3 2 0.66 0 0.00 2 1.50 0.50
OSCAR Unit Tests 1005 650 0.65 14 0.01 4 1.51 0.50
OpenMRS Unit Tests 39 34 0.87 0 0.00 4 2.11 0.49

Table 8.2: True and false positive ratio of locations reported for JDBC queries

System Test Scenario Queries TP TPR FP FPR Max Avg Var

OSCAR Add Provider 20 19 0.95 0 0.00 1 1.00 0.00
OSCAR Add Role 22 20 0.91 0 0.00 1 1.00 0.00
OSCAR Billing 702 294 0.41 2 0.01 5 1.08 0.15
OSCAR Change Password 39 33 0.84 0 0.00 1 1.00 0.00
OSCAR First Login 77 60 0.78 0 0.00 1 1.00 0.00
OSCAR New Demographic 67 47 0.70 1 0.01 5 1.12 0.23
OSCAR Request Consultation 498 150 0.30 2 0.01 5 1.06 0.12
OSCAR Send Message 43 36 0.84 1 0.02 2 1.02 0.05
OSCAR Update User 56 39 0.69 0 0.00 1 1.00 0.00
OSCAR Writing Prescriptions 100 67 0.67 1 0.01 2 1.03 0.05
OSCAR Unit Tests 1559 950 0.61 23 0.01 5 1.10 0.19
OSCAR Unit Tests 317 268 0.84 0 0.00 4 1.06 0.13

Table 8.3: True and false positive ratio of locations reported for Hibernate queries

The concept location task is injective: one query is sent to the database from
exactly one location. However, one location can implement several queries. In fact,
the same query string could be constructed in more locations too. Owing to this fact,
and because of unresolved code fragments, we usually cannot report just the exact
location where the query was sent to the database, but provide a set of matching
locations. We treat (for the evaluation) this set as true positive if it contains the
locations where the query was sent to the database, and false positive otherwise.
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1 select billingser0_.billingservice_no as billings1_373_, billingser0_.anaesthesia as
anaesthe2_373_, billingser0_.billingservice_date as billings3_373_, billingser0_.
description as descript4_373_, billingser0_.displaystyle as displays5_373_,
billingser0_.gstFlag as gstFlag373_, billingser0_.percentage as percentage373_,
billingser0_.region as region373_, billingser0_.service_code as service9_373_,
billingser0_.service_compositecode as service10_373_, billingser0_.sliFlag as
sliFlag373_, billingser0_.specialty as specialty373_, billingser0_.termination_date
as termina13_373_, billingser0_.value as value373_ from billingservice
billingser0_ where billingser0_.service_code=’A001A’ and billingser0_.
billingservice_date=(select MAX(billingser1_.billingservice_date) from
billingservice billingser1_ where billingser1_.billingservice_date<=’2014-10-28’
and billingser1_.service_code=’A001A’);

Listing 8.4: An example SQL query from the Billing scenario of OSCAR.

1 public Object[] getUnitPrice(String bcode, Date date) {
2 String hql = "select bs from BillingService bs where bs.serviceCode = ? and bs.

billingserviceDate = ?";
3 Query query = entityManager.createQuery(hql);
4 query.setParameter(1,bcode);
5 query.setParameter(2, getLatestServiceDate(date,bcode));
6

7 List<BillingService> results = query.getResultList();
8 ...
9 }

Listing 8.5: The original HQL query and the Java code which prepares the query in
Listing 8.4 (BillingServiceDao.java).

Table 8.2 and 8.3 show the number of queries and the true positive (T P ) or
false positive (F P ) location sets, respectively, with the true or false positive ratios
(T PR , F PR). Queries where the set of locations reported is empty are false negatives
(Quer i es −T P −F P ). M ax, Av g , V ar M atch stands for the maximum, average
and variance values for the sizes of the sets of locations reported.

The results of JDBC reveal that we were able to identify most of the queries of
OSCAR usage scenarios with a TPR (which is actually equal to the recall in our case)
of 60-99%.

The results of Hibernate look promising too. Except for two scenarios, we were
able to identify the origin of 60-95% of the queries by reporting almost everywhere
just the matching location (see Avg. Match values). These results could probably be
improved by getting a better parsed-extracted ratio for HQL/JPQL queries in OSCAR
(see Table 8.1).

Listing 8.4 shows a sample SQL query that we traced from the Billing scenario of
OSCAR and its origin, which is shown in Listing 8.5.

We collected the biggest number of distinct query strings from unit tests and got
false positive reports because of methods in complex DAO classes where we could
not extract query strings due to dynamic query construction.
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8.2.3 Discussion

Observations. As previously discussed, there are several forum questions and blog
posts which try to address this problem of identifying the origin of an executed query,
and because of the lack of static tools, they almost always recommend a dynamic
solution. In contrast, as we pointed out earlier, dynamic analysis is not always fea-
sible. Here, our goal was to devise a static analysis approach and to demonstrate
its potential use. Preliminary results show that a static technique can achieve good
precision and recall with good true/false positive ratio in locating SQL queries sent
to the database over JDBC, Hibernate or JPA.

Limitations. Our implementation is limited to some technologies. The query ex-
traction technique is limited to JDBC, Hibernate and JPA, and able to extract SQL,
HQL and JPQL queries. Hence, we had to make the assumption for our evaluation
that a developer seeks these kinds of queries and when we collected SQL strings, we
filtered and kept only JDBC/Native/HQL/JPQL queries.

8.3 Establishing Referential Integrity in Legacy Information
Systems

Most modern relational DBMS have the ability to monitor and enforce referential
integrity constraints (RICs), i.e., foreign key (FK) constraints. In contrast to new
applications, however, heavily evolved legacy information systems may not make use
of this important feature, if their design predates its availability. Such applications
must be reengineered in order to benefit from automated integrity enforcement.
Although the database layer is not the only option for enforcing RICs (presentation
and application layers are other options), pushing enforcement in this layer is often
seen as the most reliable option to control many concurrent ”channels” entering
data into the system.

From a high level perspective, this reengineering process consists of two steps,
namely FK identification and FK implementation. Research activity in this area has
primarily focused on the first step (identification), which can be viewed as a form of
design recovery. A wealth of different methods and tools have been proposed to re-
cover FKs from a variety of data sources, including the database schema, application
code, data instances, and documentation. While many FK identification methods
have been proposed, empirical evidence about their comparative effectiveness in
real-world industrial settings remains rare.

In contrast to many other research works that start by proposing a new or im-
proved solution to the above described reengineering problem, followed by a vali-
dation with problem case studies (often hand picked to make a point), we address
the actual problem in the context of OSCAR, a real-world, large-scale legacy system
in the healthcare industry. As a result of our analysis, we find that many of the
assumptions commonly made in database reengineering methods and tools do not
readily apply in practice. Based on our problem analysis we devise a process for
reengineering legacy information systems with respect to establishing referential in-
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tegrity constraints, incorporating, combining and extending existing reengineering
methods.

We report on empirical results of implementing this process in the context of our
problem case study system. Our results suggest that the process of reengineering
legacy information systems with respect to establishing referential integrity con-
straints may be considerably more complex than is commonly assumed. It must be
understood as an incremental detection process.

8.3.1 Problem Case Study: OSCAR

As we mentioned it in Section 3.5, the database schema of the OSCAR distribution
does not contain any information on relationships between tables (foreign keys)
and no documentation is available about the schema. We learned that the missing
relationships were due to the evolution history of OSCAR. OSCAR has been using
MySQL as its DBMS platform. MySQL supports the choice of different alternative
storage engines. During the first five years of OSCAR development, MySQL did not
support a storage engine capable of enforcing referential integrity. Consequently,
OSCAR’s database implementation does not make significant use of FK constraints
but rather consists of seemingly unrelated tables. Over the last several years, OSCAR
has been migrating to MySQL’s newer InnoDB storage engine, which provides full
support for referential integrity enforcements. Since then, more recently developed
parts of the system have made use of FK constraints. Still, the vast majority of the
database tables remain without any explicit relationships in the schema. This situa-
tion has been a frequent source of frustration in the OSCAR developer community
as it impedes program understanding and maintenance. It has also raised concerns
with respect to the integrity of patient health information and, ultimately, patient
safety. Therefore, it has been a goal to reengineer OSCAR with respect to establishing
more referential integrity constraints.
We encountered a number of challenges in our case study.

Size. One obstacle in this process is the sheer size of the database schema. With
close to five hundred tables and some of the larger tables comprising over thousands
of columns, identifying FKs cannot be a manual process but requires automated
tool support.

Multi-paradigm architecture. As discussed in Section 3.5, another challenge is
the unevenly evolved nature of the OSCAR architecture, which uses a multitude of
different paradigms to access the database. Some older application modules still
use embedded (dynamic) SQL queries, while newer modules use object-relational
middleware descriptors (Hibernate mapping files), and yet newer application code
uses code annotation tags based on the JPA standard. Therefore, no single method
for detecting FKs in application code is likely to recall all relevant relationships.

Confidential data. Knowledge about the actual database instances is an important
prerequisite for the process of identifying RICs. It is not uncommon that the data in
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Figure 8.4: Overview of our FK detection process.

legacy information systems is considered business confidential. However, patient
records are among the most sensitive and highly regulated information items in any
industry and they cannot commonly be made available for the purpose of software
engineering, even under non-disclosure agreements. We had to create software and
a process to securely encrypt the data prior to FK analysis and attain approval from
the University ethics board prior to our reengineering study.

No oracle available. Since (1) the vast majority of the database tables remain without
any explicit FK constraints in the schema and (2) no previous reengineering process
has been done yet on the OSCAR system, we do not have any oracle to systematically
evaluate the proposed approach. Instead, involving the OSCAR developers in the
establishment of of a ground truth may be required.

8.3.2 Foreign Key Detection Process

The reengineering process, depicted in Figure 8.4, applied in this study starts with
the identification of implicit integrity constraints through the triangulation of sev-
eral RIC identification techniques. We present a process to address the RIC detection
in a legacy system through the joint analysis of multiple sources of information: the
database schema, the database contents and the program source code. The results
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obtained by each analysis technique are then combined in order to find a certain
number of likely foreign key candidates. In the following, we describe each analysis
step we follow in our reengineering process.

Schema Analysis. The Schema Analysis process is guided by the primary key con-
straints found in the tables of the schema. Each column colPK contained in a
primary key of a table is used to search for other columns in the database schema
that could reference it. Algorithm 11 specifies this process. We use tabPK and colPK
variables to refer to the table and the column, respectively, of the primary key side.

1 result ←; ;
2 for tabPK ∈ schema do
3 for colPK ∈ tabPK.constraintPK do
4 result ← result + SearchForFK(tabPK, colPK);
5 end
6 end
7 return result;

Algorithm 11: Schema Analysis algorithm.

In the SearchForFK function, columns are searched based on their names and
data types (SQL type, length and precision) as we show in Algorithm 12. Variables
table and column are used to refer to the table and the column, respectively, analyzed
as a candidate foreign key.

1 procedure SearchForFK(tabPK, colPK)
2 result ←; ;
3 for table ∈ schema do
4 for column ∈ table do
5 if column 6= colPK then
6 if column.type = colPK.type & column.length ≥

colPK.length & column.precision ≥ colPK.precision &
EqualsNames(table, column, tabPK, colPK) then

7 result ← result + (tabPK, colPK, table, column);
8 end
9 end

10 end
11 end
12 return result;

Algorithm 12: SearchForFK function.

The EqualsNames function returns true if the names of the columns and tables
analyzed are compatible, and returns false otherwise. The meaning of compatible
is based on the partial matching of the table and column names, according to their
length. The function checks the length of the column name colF K considered as
foreign key candidate. If the length ≥ 5 characters we check whether the target table
name t abPK and/or the target column name colPK is included in colF K (only if
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its length is > 2, otherwise we consider that this name is not meaningful enough).
If the length of colF K is < 5 characters we do not check if t abPK is contained in
colF K (because we consider that names are not meaningful) and we only check the
length of colPK . If it is > 2, we check if colPK is contained in colF K . Otherwise, we
could suppose that colPK has a name like ’id’ or something similar. In this scenario,
a specific check is performed: we eliminate in colF K the occurrences of colPK and
some other special characters like ’_’. Then, we verify if the resulting name is part of
t abPK 3.

Let us illustrate this using an example. We could have a colF K named ’prid’
which would be analyzed in relation to a colPK named ’id’ in a table named
’provider’. After elimination of the colPK from colF K , we would have the string
’pr’ which would be contained in t abPK .

Data Analysis. The Data Analysis process utilizes the results generated by the
Schema Analysis process as starting point. This approach is usually a necessity
for large-scale legacy databases, as a brute-force data analysis with respect to detect-
ing all potential foreign keys is usually computationally prohibitive.

1 procedure SearchForFK(tabPK, colPK)
2 result ←; ;
3 for (tabPK.colPK, tabFK.colFK) ∈ set(tabPK.colPK, tabFK.colFK) do
4 countFKReg ← select count(*) from tabFK;
5 matching ← (select colFK from tabFK) ∩ (select colPK from tabPK);
6 percentage ← (macthing × 100)/countFKReg;
7 if percentage ≥ threshold then
8 result ← result + (tabPK, colPK, tabFK, colFK);
9 end

10 end
11 return result;

Algorithm 13: Data Analysis algorithm.

Algorithm 13 shows how the data analysis is applied. Taking a set of foreign
key candidates, the algorithm calculates the matching of values involved on each
candidate. This matching defines how many values in tabFK.colFK can be found in
tabPK.colPK. This matching value must be measured in relation to the number of
rows in tabFK to calculate the percentage of matching values. The number of rows
in tabPK is reported for better interpreting that percentage.The algorithm is set up
by means of a threshold value which is established to only return candidate foreign
keys (tabPK, colPK, tabFK, colFK) having a percentage value above the threshold
value.

JDBC Analysis. Our JDBC Analaysis process enables to analyze the programs source
code in order to identify, parse and exploit the SQL queries using the JDBC API. This

3Those numeric bounds were arbitrarily chosen based on our experience; however, we are aware
that a further study might be needed to calibrate those values with precision.
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1 <class name="TicklerUpdate" table="tickler_update">
2 <many-to-one name="tickler" class="Tickler"
3 column="tickler_no" update="false" insert="false" lazy="false" />

Listing 8.6: Example of many-to-one relationship defined in Hibernate mapping file.

process utilizes our static analysis approach presented in Chapter 4, in particular
the JDBC access extraction process (described in Section 4.2.2), in order to detect
and extract SQL queries. Once these queries have been retrieved, they are parsed to
extract the FROM and WHERE clauses. Analyzing those clauses permits to detect
join conditions and to infer candidate foreign keys. The join condition is usually
expressed by using equality conditions between columns (e.g., WHERE columnA =
columnB), but other kinds of "join" can be expressed by using nested queries (e.g.,
WHERE columnA in (select columnB FROM ...)). We thus analyze the content of
the FROM and WHERE clauses, searching for a join condition and extracting the
tables and columns implied in candidate foreign keys.

Hibernate Analysis. A large part of the OSCAR applications uses the Hibernate ORM
to access the database. Hibernate allows developers to map Java classes to database
tables. Those mappings are usually declared in a mapping file (an XML document)
that instructs Hibernate how to map the Java classes to the database tables. We
consider the Hibernate XML mapping files as another possible way to infer implicit
foreign keys. Although an ORM such as Hibernate offers an abstraction layer permit-
ting to ignore the underlying database structures (and thus the presence of FKs), we
consider that some legacy systems could use Hibernate to access legacy databases
with missing constraints (like OSCAR). Our Hibernate mapping file analysis searches
in each mapping file for a ’class’ tag, where an entity name is mapped to a table
name by means of ’name’ and ’table’ attributes, respectively. If both names are
equal, ’table’ attribute could be omitted. In a similar way, the attributes in an entity
are declared by a ’property’ tag and ’name’ and ’column’ attributes. Declarations of
RICs can be defined using the following tags: ’one-to-one’, ’many-to-one’, ’one-to-
many’ and ’many-to-many’. Different kinds of RICs are permitted in a mapping file.
We illustrate below some of the most common techniques:

sMany-to-one relationships. In Listing 8.6, the developer defined a many-to-
one constraint between the tickler table and the tickler_update table mapped
to TicklerUpdate class. In such a case, we can infer a foreign key from table
tickler_update to table tickler. Our Hibernate parser identifies the ’name’
attribute as the foreign key column, and the ’class’ and ’column’ attributes as
the target primary key.sOne-To-many relationships. Inversely, in Listing 8.7, the developer defined a
one-to-many constraint between the tickler_update table and the tickler table
mapped to the Tickler class. Here again, we can infer the foreign key between
both tables.
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1 <class name="Tickler" table="tickler">
2 <id name="id" type="integer" column="tickler_no">
3 <generator class="native" />
4 </id>
5 <set name="updates" inverse="true" cascade="save-update" sort="natural" lazy="false">
6 <key column="tickler_no" />
7 <one-to-many class="TicklerUpdate" />
8 </set>

Listing 8.7: Example of one-to-many relationship defined in Hibernate mapping file.

1 <class name="Site" table="site">
2 <set name="providers" table="providersite" lazy="true" inverse="true">
3 <key column="site_id" />
4 <many-to-many column="provider_no" class="Provider" /> </set>

Listing 8.8: Example of many-to-many relationship defined in Hibernate mapping
file.

1 <class name="Tickler" table="tickler">
2 <property name="numUpdates"
3 formula= "(select count(*)
4 from TicklerUpdate tickler
5 where tickler.tickler_no=tickler_no)"/>

Listing 8.9: Example of SQL query declared in Hibernate mapping file.

sMany-to-many relationships. In Listing 8.8, the developer defined a multi-
valued association. The Hibernate parser identifies the ’name’ attribute of ’set’
tag as a foreign key column, and the ’class’ and ’column’ attributes contained
in ’many-to-many’ tag as the target primary key. But in this case, since an in-
termediate table must be referenced for both foreign keys, the ’table’ attribute
in the ’set’ tag is needed to refer to an intermediate table name.sSQL query declarations. Hibernate also allows developers to use SQL queries
directly in the mapping file. Those queries could be a good indicator for
inferring RICs too, especially when the query consists of a join between two
tables. Listing 8.9 shows an example of SQL query defined in a Hibernate
mapping file.

Furthermore, the Hibernate analysis also utilizes our static analysis approach
presented in Chapter 4, in particular the Hibernate access extraction process (de-
scribed in Section 4.2.3) in order to detect and extract HQL queries from the source
code. Once extracted, they are translated in their corresponding SQL form and
analyzed for detecting join conditions and candidate foreign keys.

JPA Analysis. Unlike Hibernate, JPA uses Java code annotations rather than XML
mapping files to specify how persistent objects and their relationships are mapped to
relational table structures. The most recent OSCAR components use JPA annotations
rather than Hibernate mapping files. The annotation analysis process detects and
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1 @Table(name = "tickler")
2 public class Tickler { ...
3 @OneToMany(fetch=FetchType.EAGER)
4 @JoinColumn(name="tickler_no", referencedColumnName="tickler_no")
5 private Set<TicklerUpdate> updates = new HashSet<TicklerUpdate>();
6 ... }

Listing 8.10: Example of one-to-many relationship defined with JPA annotation.

analyzes JPA annotations within the source code, in order to recover referential
relationships. For each JPA entity file a ’Table’ annotation is searched, where an entity
name is mapped to a table name by means of the ’name’ attribute. If both names are
equal, the ’Table’ annotation can be omitted. Declarations of RICs are defined using
one of the following annotations: ’ManyToOne’, ’OneToMany’ and ’ManyToMany’.
For instance, Listing 8.10 shows an example of one-to-many JPA annotation which
expresses the same RIC as in our Hibernate example. The ’JoinColumn’ annotation
contains attributes to define the foreign key column (’name’) and the column of
the target primary key (’referencedColumnName’). The table name containing the
RIC is obtained from the entity class, and the table name referenced by the RIC is
obtained from the class type in the attribute defining the relationship.

Furthermore, the JPA analysis also utilizes our static analysis approach pre-
sented in Chapter 4, in particular the JPA access extraction process (described in
Section 4.2.4) in order to detect and extract JPQL queries from the source code.
Once extracted and translated in their corresponding SQL form, those queries are
analyzed to exploit the join conditions and to infer candidate foreign keys.

8.3.3 Results

As described above, we have implemented 5 different techniques for recovering
implicit FKs. After applying those techniques on the OSCAR system, we extracted
1,899 FK candidates. Figure 8.5 illustrates the distribution through the 5 techniques:
1,818 FK candidates were detected by the schema analysis; 291 by the data analysis;
28 by the Hibernate analysis; 32 by the JPA analysis, and 50 by the JDBC analysis.

Another iteration was required for further exploiting those first results. We de-
fined a list of criteria allowing us to accept a FK candidate. Each candidate FK
respecting at least one of those criteria is accepted:

(a) The FK is proposed by the schema analysis and has a matching percentage
above or equal to 90%.

(b) The FK is proposed by the Hibernate analysis.

(c) The FK is proposed by the JPA analysis.

(d) The FK is proposed by the JDBC analysis and it refers to a primary/unique key.
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After applying those criteria, we moved from 1,899 potential to 215 accepted
candidates. The 1,684 remaining ones are considered as unlikely. In order to reach
higher precision in our results, we also considered 4 rejection criteria:

(a) Matching. The unlikely candidates having a data matching value lower than
90% are rejected.

(b) Bi-directionality. The unlikely candidates such as there exists an accepted can-
didate in the opposite direction, are rejected. An encountered case of rejected
candidate, due to the bi-directionality property, is illustrated by Figure 8.7.

(c) Unicity. The unlikely candidates such as there exists an accepted candidate
defined on the same column(s), are rejected. An encountered example of
rejected candidate, due to the unicity property, is depicted in Figure 8.8.

(d) Transitivity. The accepted candidates that could be transitively derived from
other accepted candidates are rejected. A case of rejected foreign key, due to
the transitivity property, is given in Figure 8.9.

Figure 8.6 represents the distribution of the accepted candidates through the
5 information sources after having considered our rejection criteria: 146 unlikely
candidates have been rejected because they do not respect the minimal matching
value; 1,219 unlikely candidates have been rejected by unicity; 23 unlikely candidates
by bi-directionality while 37 previously-accepted candidates have been rejected by
transitivity.
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8.3.4 Discussion

Observations. The results obtained when identifying FK candidates in OSCAR
yield some interesting concluding observations. First, we observe that the different
sources of information have different levels of reliability. Although we do not know
the actual list of implicit foreign keys that are valid in OSCAR, we can already say
that the schema analysis technique may lead to overly noisy results when used in
isolation. However, there is no perfect source of information that would, alone, be
sufficient for identifying all implicit FKs. For instance, while the Hibernate mapping
file and the JPA annotations are reliable sources of information, they allowed us to
recover a very limited subset of the implicit FKs in the OSCAR schema, i.e., those
involved in the most recent tables. This observation directly relates to the evolution
history of the system. We saw that the management of implicit RICs in a system
may be largely inconsistent over time. Some old RICs have never been explicitly
declared, some more recent ones have been specified through Hibernate, and some
others have been declared via JPA annotations. Hence, the FK detection approach we
propose, based on the triangulation of several techniques for confirming/rejecting
FK candidates, seems very promising in the context of a legacy system that has been
subject to a long evolution history.

Furthermore, the results obtained allow one to analyze, for each FK candidate,
the impact of making the FK explicit in the database schema. In case the FK can-
didate is violated by the data: the impact is at least twofold: (1) the inconsistent
data will need to be corrected or discarded and (2) source code modifications will be
required in order to ensure the adequate management of the FK constraint every-
where the programs insert, update and delete rows in the related tables. In contrast,
when the FK candidate is systematically encoded via Hibernate or through JPA an-
notations, the impact of its explicit declaration at the database schema side is much

186



8.4. Supporting Schema Evolution in Schema-less NoSQL Data Stores

more limited.

Limitations. Although it has shown some merits, our multi-source FK identification
process suffers from several limitations. First, the threshold of 90% for the data
consistency heuristics could be further validated and calibrated with respect to the
number of rows in the referencing table. In addition, since we did not have access
to a ground truth, it was difficult for us to precisely quantify the reliability and the
complementarity of the different identification techniques we combine. This will be
a prerequisite to further improve our triangulation process and devise a more accu-
rate FK candidate ranking method. Finally, as we mentioned above, some OSCAR
tables involved in a FK candidate being empty, our results are partially incomplete
as well.

Future work. We anticipate several directions for future work in the context of
FK detection. First, we intend to further investigate the OSCAR case study, and to
involve the developers in the establishment of a ground truth, even partial. Second,
we plan to consider other sources of information for the identification and ranking
of FK candidates. We think, in particular, of integrating historical information. For
instance, let us assume that the history analysis reveals that the same developer has
created both tables involved in a FK candidate, this could be seen as an additional
confirmation argument. In contrast, if a FK candidate involves two very recently
created tables the names of which do not appear in the Hibernate file nor in the
JPA annotations, this could be considered as a rejection argument. Last but not
least, we intend to devise a tool-supported methodology for assisting developers to
incrementally implement identified FK candidates in a legacy software system.

8.4 Supporting Schema Evolution in Schema-less NoSQL Data
Stores

NoSQL data stores are becoming increasingly popular in the context of big data
software development. These data stores were designed to manipulate big volumes
of data that are not organized according to the relational model. NoSQL technologies
were introduced to address some relational database limitations: simplicity of design,
faster query execution and flexibility. Indeed, most NoSQL data stores are schema-
less and can thus manage data with ever-changing structures. In a continuously
changing environment, database schema evolution becomes an unavoidable activity
and therefore, proposing such a flexibility is a precious asset. Schema-less NoSQL
data stores do not require developers to specify a global schema, which makes data
evolution simpler. For instance, adding new fields to a data structure can be done at
any time and instantly.

However, this flexibility may lead to an increasing data structure entropy within
the system. When the schema evolves, the outdated entities must be migrated to fit
with the new structures. Nevertheless, migrating data may be time-consuming and
expensive; especially when a huge amount of data has to be migrated or when the
system is contractually linked to a database-as-a-service provider for all data store
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same NoSQL database.

reads and writes. As a consequence, data migration may never be achieved and thus,
data entities of different schema versions may co-exist in the data store. Figure 8.10
illustrates an example of co-existence of legacy and up-to-date data entities within
the same NoSQL database, after several changes of the data structure. Such an
entropy may prove error-prone. For instance, conflictual entities can cause runtime
errors and data loss, or can even corrupt the database, if not handled properly. For
instance, changing the type of a particular field requires to deal with both the legacy
and the up-to-date entities when manipulating data in the program. In other words,
in NoSQL data stores, the past belongs to the present, and clearly affects the future.
Therefore, understanding schema evolution in schema-less NoSQL databases is
essential for future developments.

In schema-less data stores, no explicit database schema is declared by developers.
Thus, the main source of information concerning the data structures is the source
code itself. In particular, the database writes and reads located in the source code
give concrete clues about data structures. Among other NoSQL technologies, Mon-
goDB is a schema-less document-oriented database. It stores JSON-like documents
in collections. Collections are similar to tables in relational databases, and are com-
posed of fields4.
Listing 8.11 depicts an example of Java code manipulating entities from a MongoDB
database. Useful information can be extracted from that code sample; the existence
of several collections as well as the type of some of their fields can be inferred. More-
over, analyzing how the source code (especially the database-related code) evolved
over time can significantly help developers to understand how the schema evolved
and thus to prevent potentially severe errors.

In this Section, we presents an automatic historical analysis approach that aims
at understanding schema evolution in NoSQL data stores. We present two main nov-
elties: (1) an automatic approach that infers the database schema of a schema-less

4https://docs.mongodb.com/manual/
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1 DB db;
2 public String save(ContributionToSave contributionToSave) {
3 BasicDBObject authorQuery = new BasicDBObject("_id", new ObjectId(

contributionToSave.getAuthor().getId()));
4 DBObject author = db.getCollection("author").findOne(authorQuery);
5 BasicDBObject showQuery = new BasicDBObject("_id", new ObjectId(

contributionToSave.getShow().getId()));
6 DBObject show = db.getCollection("show").findOne(showQuery);
7 addContributionToAuthor(contributionToSave, authorQuery, author, show);
8 return "ok";
9 }

10

11 private void addContributionToAuthor(ContributionToSave contributionToSave,
BasicDBObject authorQuery, DBObject author, DBObject show) {

12 BasicDBList contributions = (BasicDBList) author.get("contributions");
13 if (contributions == null) {
14 contributions = new BasicDBList();
15 author.put("contributions", contributions);
16 }
17 BasicDBObject contribution = new BasicDBObject();
18 contribution.put("nick", contributionToSave.getNick());
19 BasicDBObject contributionShow = new BasicDBObject();
20 contributionShow.put("alias", show.get("alias"));
21 contributionShow.put("name", (String) show.get("name"));
22 contributionShow.put("ref", new DBRef(db, "show", show.get("_id")));
23 contribution.put("show", contributionShow);
24 contributions.add(contribution);
25 db.getCollection("author").update(authorQuery, author);
26 }

Listing 8.11: Java code example using the MongoDB API to access the database.

NoSQL data store by analyzing the application source code and (2) the application of
this approach to the whole system history in order to understand schema evolution
and to prevent errors and data losses.

8.4.1 Approach

This Section presents our automatic approach allowing developers to understand
and analyze schema evolution in schema-less NoSQL data stores. Our approach,
summarized in Figure 8.11, is made up of three phases, namely schema extraction,
historical schema extraction and exploitation.

Schema Extraction

As previously explained, useful information about the NoSQL database schema can
be extracted by analyzing the source code, especially those code locations accessing
the database. The first step of our automatic approach aims to infer the database
schema by statically analyzing the database accesses from the source code. Our
technique is currently implemented for systems using the MongoDB Java driver
to communicate with the database. The choice for Java is because it is the most
popular programming language today according to different sources such as the
TIOBE Programming Community index [TIOBE Programming Community Index,
2017]. Moreover, we focus on MongoDB which is currently ranked among the top
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five database systems and at first position among the NoSQL database systems [DB-
Engines Ranking, 2017].

For describing our technique, we will consider the Java code example depicted
in Listing 8.11. If one further observes this code, one can detect the presence of three
database accesses, at lines 4, 6 and 25, respectively. (1) Line 4 reads the database to
find a particular author based on a given identifier; (2) line 6 reads the database to
find a particular show based on a given identifier; (3) line 25 updates a particular
author.
Through this example and by inspecting the Java MongoDB API documentation5,
we can make two important observations:

(a) A database access may use one or several selection criteria to create the query
(e.g., authorQuery at line 4, showQuery at line 6 and, authorQuery and
author at line 25). Thus, analyzing the operations performed on those objects
before the database access execution, brings added information about the
collection fields concerned by the selection criteria.

(b) A database access may return a set of objects resulting from the operation
(e.g., author and show variables respectively at line 4 and 6, storing the query
results). Thus, analyzing the read operations performed on those objects after
the access execution, gives indications about the fields they contain.

In other words, information about the database structures may be inferred by
analyzing (1) the usage flow of the query inputs before query execution and (2) the
usage flow of the query outputs after query execution. A first algorithm is proposed
in Algorithm 14:

Line 1 detects the code locations accessing the database. We achieve this first
step by exhaustively listing the set of Java methods provided by the MongoDB API
that allows developers to query the database. Once this list established, we use a

5https://api.mongodb.com/java/current/

190



8.4.1. Approach

1 foreach access ∈ getAccesses() do
2 getCollectionNames(access);
3 foreach input ∈ access.inputs do
4 analyzeUsageFlowBefore(input);
5 end
6 foreach output ∈ access.outputs do
7 analyzeUsageFlowAfter(output);
8 end
9 end
Algorithm 14: Algorithm resolving MongoDB accesses within the source code.

visitor class which parses the Java code and detects any MongoDB database accesses.
For each detected access, we have to determine the set of collections that is queried
(getCollectionNames procedure). This information can be obtained by analyzing
instructions in the form DB.getCollection(String collectionName). The an-
swer is in the value affected to collectionName. However this value depends on the
call graph of the application and the intraprocedural control-flow of the methods.
Indeed, building a string value may necessitate to pass through different statements
and boolean conditions (e.g., for, while, if-then-else statements). Thus, our static
analysis has to consider all possible program paths. Similarly, the string value con-
struction may be done by successive concatenations of string fragments or by using
some input parameters of the local method. Therefore, we need to consider the
call graph of the application to get the actual values of the string input parameters.
To achieve this task of string reconstruction, we use the tool support, dedicated to
database access recovery in Java source code, that we developed and presented in
Section 4.2. We developed an extended version of this static analysis approach to
automatically detect and reconstruct a MongoDB access by exploring the call graph
of the application and the intraprocedural control-flow of the methods. Let us come
back to our example in Listing 8.11: our static analyzer automatically detects that the
database accesses at line 4, 6 and 25 actually query, respectively, the author, show
and author collections.

The next step consists in analyzing the input objects which serve as selection
criteria for the query creation (analyzeUsageFlowBefore procedure). Thanks to
the MongoDB API, we pointed out that the creation criteria are mainly expressed
by means of the DBObject, BasicDBObject and BasicDBList classes. An instance
of those classes is a key-value map that can be stored in the database, where the
key represents a field name and the value is the field value. Accordingly, analyzing
the usage flow of this map from its creation until the access execution allows us
to spot the fields used to define the query. To realize this task, we overloaded our
static analyzer so that it can control the usage flow of the inputs. For instance, the
database access at line 4 uses a unique selection criterion to create its query, i.e., the
authorQuery object. By analyzing the usage flow of this given object (and by reusing
our string value extractor), our analyzer automatically spots line 3 which actually
represents a value assignment to the author._id field. It is worth noticing that
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Figure 8.12: Schema automatically inferred by our approach applied to Listing 8.11.

the analyzeUsageFlowBefore procedure is actually recursive. Indeed, the value
assigned to a particular key in the map may be, itself, an instance of the DBObject,
BasicDBObject and BasicDBList classes and thus, a recursive call is needed to
analyze this instance.

The final step consists in analyzing the usage flow of the output objects resulting
from the database access (analyzeUsageFlowAfter procedure). Indeed, analyzing
the operations performed on those output objects may reveal new fields of the target
collection. This step is similar to the previous one, the only difference being that,
instead of analyzing the object usage flow before the database access, it focuses
on the object usage flow after the database access. In Listing 8.11, variable show
contains the result of the database access at line 6. However, analyzing the usage
flow of an object after a given event (i.e., a database access) requires the analysis
of the application call graph, since the object may be part of the input parameters
of a method call. In the example, our static analyzer determines that show is used
as input in the addContributionToAuthor method call (line 7), and visits this
method to observe how the object is manipulated. At line 20, 21 and 22, the analyzer
detects the read of, respectively, the alias, name and _id fields.

As output, the analyzer returns the database schema fragment which is con-
cerned by each detected database access. Finally, the analyzer merges all the ex-
tracted schema fragments in order to obtain a unique schema. Figure 8.12 depicts
the schema automatically inferred by our approach when applied to Listing 8.11.
Our analyzer is also able to deal with the referential constraints, i.e., foreign keys,
declared in the source code. At line 22 in Listing 8.11, a referential constraint is de-
clared between author.contributions.show.ref and show._id. Indeed, DBRef
allows documents located in multiple collections to be easily linked to documents
from a single collection.

The field extraction process also tries to gain information about the types of the
fields. For instance, after detecting an access to the name field at line 21, our analyzer
considers the extracted field as a String object.
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Figure 8.13: Conceptual representation of the historical schema.

Historical Schema Extraction

The second step of our approach aims to apply the schema extraction process to
the whole system history by exploiting the versioning system. This step, directly
inspired by the historical analysis approach presented in Section 3.2, consists in
extracting and comparing the successive versions of the database schema, in order
to produce the so-called historical database schema. The latter is a representation of
the database schema evolution over time, as depicted by the ER model in Figure 8.13.
It contains all database schema objects (i.e., collections, fields and foreign
keys) that have existed in the history of the system. Those schema objects are
annotated with meta-information about their lifetime such as (1) the list of schema
versionswhere the object is present and (2) for each version of this list, the code
locations accessing the object. In addition, each field owns information about its
data type and its evolution; one can know the data type(s) of any field at any version
of the system (particular cases can happen where a same field can have several
possible data types in a same schema version). In this way, one has an accurate
overview of the field evolution over time which could allow detecting error-prone
data type changes.

The historical database schema thus constitutes an integrated representation
of the system past and present. Exploiting this historical schema can help to detect
potential runtime errors or data corruptions and to facilitate future developments.

Finally, we apply an automatic procedure that colourizes each historical schema
object, depending on its age and its liveness. The schema objects depicted in green
are still present in the latest schema version. The red schema objects do not belong
to the latest version. The colour shade corresponds to the age of the objects. A
dark red schema object is an object that has disappeared a long time ago. A light
red object is an object that has recently disappeared from the schema. An object
depicted in green corresponds to an object that is still present in the latest schema
version. The darker the green, the older the object is, and vice versa. An example of
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Figure 8.14: Example of schema evolution and the corresponding historical schema.

schema evolution and the corresponding colourized historical schema is given in
Figure 8.14.

Exploitation

Exploiting the historical schema can facilitate the understanding of the schema
evolution, and it can allow developers to spot potentially severe runtime errors or
irretrievable data losses, together with the related code locations.

Colourization benefits. The color assigned to an object gives indications about
its liveness. While the red color is assigned to objects which do not belong to the
latest schema version, it does not necessarily represent a deleted object; it might
only represent a field/collection that is no longer accessed in the latest source code
version but that still exists in the database schema. Moreover, even if a red object
is actually deleted from the schema, it does not ensure that there is no legacy data
linked to this object. A red object only represents a soft warning to make developers
aware of potentially outdated entities which should be either migrated or kept in
mind for future developments.

Type mismatch detection. As previously explained, a data type change may cause
error/crash if not properly managed by developers. Detecting the occurrence of a
data type change is made possible by the historical schema and its meta-information.
Indeed, since we can know the data type(s) of any field at any system version, we
can easily detect a data type change.

Renaming detection. When a field or a collection is renamed or moved, developers
need to keep it in mind for future developments. Indeed, similarly to a data type
change, the legacy data have to be managed. Therefore, our automatic approach
supports the identification of implicit (field/collection) renamings. The detection
algorithm (detailed in Section 3.2.5) is based on different comparison criteria (e.g.,
name similarity, the field type similarity, etc.).

Data corruption/loss detection. Since a schema-less data store does not require
an explicit schema, no verification before inserting a new record in the database is
done, which might cause a data corruption/loss (e.g., accidentally removing/erasing
stored data). Analyzing the historical schema of a system can help detecting such
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Studied Period #Versions #Fields #Accesses

29/11/2014 → 06/12/15 303 43 → 94 95 → 237

Table 8.4: Information concerning Tilos Radio.

situations. For instance, a field receiving several different data types at a same
version can denote a potential error that might lead to a data corruption/loss.

8.4.2 Early Evaluation

We applied our approach to a particular subject system containing the backend
services of the Tilos Radio6. The Tilos Radio is a community, non-profit radio station
in Budapest, Hungary. The versioning system of this project has a two-year history7.
Since the introduction of MongoDB in the project, 303 versions of the system were
committed on a period of one year. Its two-year evolution history and the use of
MongoDB make Tilos Radio a good candidate for evaluating our historical analysis
approach.

We applied our schema extraction approach to each version and computed the
corresponding historical schema. Table 8.4 describes the evolution of Tilos. From
the introduction of MongoDB until the latest version, the number of fields has
more than doubled (from 43 to 94 fields). The number of accesses to the data store
detected by our approach has also increased between the initial version and the
latest one (from 95 to 237 accesses).

6https://tilos.hu/page/english
7https://github.com/tilosradio/web2-backend/
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Figure 8.15: Historical schema of Radio Tilos displayed by our visualization tool.
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The historical schema, shown in Figure 8.15, is visualized by our visualization
tool. The latter provides developers with automatic reports about what happened
in the system past. Icons warn developers of particular past events; clicking on
those icons allows one to display automatic reports about those events. Error icons
report on past events that might cause program crashes or data corruption. Warning
icons aim to make developers aware of past events that should be considered for
future developments (e.g., renamed fields/collections). Warning icons report on soft
warnings while error icons report on strong warnings.

By analyzing this historical schema and the automatic reports processed by our
tool, we made interesting observations concerning the schema evolution of this
subject system.

Figure 8.16: Automatic report emitting a strong warning concerning the type of the
comment.identifier field.

The first automatic report (depicted in Figure 8.16), generated by clicking on the
comment.identifier field, emits a strong warning. This strong warning informs
users that a conflict with the type of the comment.identifier field happened from
version 8 to version 67; indeed, it appeared that this field received several types
(integer and string) during this period. This conflict might cause program crashes
if the program attempts to load legacy integer entities and to store them in string
parameters. The automatic report provides users with direct links to the source code
showing the code locations where this conflict appeared8. Listings 8.12 and 8.13
show, respectively, the save of string and integer values in the same system version.

Another interesting observation is the automatic detection (see report depicted
in Figure 8.17) of a particular renaming occurred at version 198: the bookmarks
collection was moved (renamed) and became a compound field of the episode
collection, as illustrated by Listings 8.14 and 8.15 showing the changes in the source
code, respectively, before and after the renaming9. Thus, the remaining legacy

8Integer value:http://bit.ly/2i8BUFl. String value:http://bit.ly/2jycscv
9Before move:http://bit.ly/2d35A1b. After move:http://bit.ly/2dlzLQw
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1 DB db;
2 public List<CommentData> list(CommentType type, String id) {
3 BasicDBObject query = new BasicDBObject();
4 query.put("identifier", id);
5 DBCursor comments = db.getCollection("comment").find(query);
6 ...
7 }

Listing 8.12: Save of identifier as a string in version 67.

1 DB db;
2 public CreateResponse create(CommentType type, int id, CommentToSave data) {
3 BasicDBObject comment = modelMapper.map(data, BasicDBObject.class);
4 comment.put("identifier", id);
5 ...
6 db.getCollection("comment").insert(comment);
7 ...
8 }

Listing 8.13: Save of identifier as an integer in version 67.

Figure 8.17: Before and after moving bookmark in episode at version 198.

entities of the outdated bookmark collection should be managed accordingly by
developers.

Figure 8.18 reports on a potential data loss occurred in the system past. Our
approach automatically spotted a potential data loss due to a misuse of the
user.passwordChangeTokenCreated field. Indeed, developers assigned a wrong
value to this field, which overwrites the correct value, as depicted in Listings 8.16
and 8.17 showing the potential loss before and after fixing the mistake10. This
mistake stayed unfixed during 20 system versions (from version 0 to version 19),
what could represent an important data loss since the correct values to store in the

10Before fix:http://bit.ly/2cxI1A3. After fix:http://bit.ly/2cPbQII
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1 Db db;
2 public CreateResponse create(Session session, String episodeId, BookmarkToSave

bookmarkToSave) {
3 BasicDBObject episodeSelector = new BasicDBObject("_id", new ObjectId(episodeId));
4 BasicDBObject bookmark = new BasicDBObject();
5 bookmark.put("from", bookmarkToSave.getFrom());
6 ...
7 db.getCollection("bookmark").insert(bookmark);
8 ...
9 }

Listing 8.14: Insertion of a new bookmark into the bookmark collection before its
renaming.

1 DB db;
2 public CreateResponse create(Session session, String episodeId, BookmarkToSave

bookmarkToSave) {
3 BasicDBObject episodeSelector = new BasicDBObject("_id", new ObjectId(episodeId));
4 DBObject episode = db.getCollection("episode").findOne(episodeSelector);
5 BasicDBObject bookmark = new BasicDBObject();
6 bookmark.put("from", bookmarkToSave.getFrom());
7 ...
8 if (episode.get("bookmarks") == null) {
9 episode.put("bookmarks", new BasicDBList());

10 }
11 ((BasicDBList) episode.get("bookmarks")).add(bookmark);
12 db.getCollection("episode").update(episodeSelector, episode, true, false);
13 ...
14 }

Listing 8.15: Insertion of a new bookmark into the episode.bookmark field after its
renaming at version 176.

Figure 8.18: Loss of the value to store in passwordChangeTokenCreated.

database are definitely lost. Further analysis revealed that the wrong value should
have been assigned to another field of the user collection.
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1 DB db;
2 private Response generateToken(PasswordReset passwordReset) {
3 DBObject user = db.getCollection("user").findOne(new BasicDBObject("email",

passwordReset.getEmail()));
4 ...
5 String token = authUtil.generateSalt();
6 user.put("passwordChangeTokenCreated", new Date());
7 user.putpasswordChangeTokenCreatedtoken);
8 db.getCollection("user").update(new BasicDBObject("username", user.get("username")),

user);
9 ...

10 }

Listing 8.16: Loss of the value to store in passwordChangeTokenCreated.

1 DB db;
2 private Response generateToken(PasswordReset passwordReset) {
3 DBObject user = db.getCollection("user").findOne(new BasicDBObject("email",

passwordReset.getEmail()));
4 ...
5 String token = authUtil.generateSalt();
6 user.put("passwordChangeTokenCreated", new Date());
7 user.put("passwordChangeToken", token);
8 db.getCollection("user").update(new BasicDBObject("username", user.get("username")),

user);
9 ...

10 }

Listing 8.17: Fix of the data loss related to passwordChangeTokenCreated.

8.4.3 Discussion

In summary, this Section presents two main novel contributions: (1) a static analysis
approach, specifically designed for Java systems using MongoDB, which extracts the
NoSQL database schema from the application source code (as unique information
source) by exploring the call graph and the intraprocedural control-flow of the
application; (2) a historical analysis which helps developers to understand the
schema evolution and allows the automatic detection of potential errors and data
losses.

We applied this approach to the whole history of a subject system and we com-
puted the so-called historical schema. We finally showed how analyzing the past of
a system, by using this historical schema, can be useful to understand the present
version and to ease future developments. In particular, our approach automatically
detects and warns developers about potential risks, such as past data structure
changes, data type mismatches and data losses.

Limitations

The schema extraction phase of our approach may be affected by several limitations.
Our tool approach is specifically designed for systems using the MongoDB Java driver
to communicate with the database. While Java is the most popular programming
language today [TIOBE Programming Community Index, 2017] and MongoDB is
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the most used NoSQL database systems [DB-Engines Ranking, 2017], the presented
approach could be extended to other languages and database systems.

Secondly, since the schema extraction partially relies on our static analysis ap-
proach (presented in Section 4.2) exploiting the intraprocedural control-flow of the
application, its static nature is mainly at the basis of some limitations (as further
discussed in Section 4.3.3).

In the future, we intend to conduct empirical studies on a large set of systems to
analyze how developers evolve NoSQL databases in practice and to further study the
entropy introduced by this evolution.

8.5 Concluding Remarks

In this Chapter, we reused several principles and approaches presented in the previ-
ous chapters. We showed their usefulness by applying them to three other fields:

(a) We adapted our static analysis solution presented in Chapter 4 for a typical
concept location problem for data-intensive systems: "where was this query
executed?". We adapted our static technique for identifying the exact source
code location(s) from where a given SQL query was sent to the database server.

(b) We devised a process for reengineering legacy information systems with re-
spect to establishing referential integrity constraints, incorporating, combin-
ing and extending existing reengineering methods. In particular, analyzing the
database usage within the source code can help at finding implicit referential
integrity constraints; hence, we use our static analysis approach (presented in
Chapter 4) to recover database accesses from the source code.

(c) We presented an automatic approach that aims at understanding schema
evolution in NoSQL data stores. We presented two main novelties:

san automatic approach that infers the database schema of a schema-less
NoSQL data store by analyzing the database usage within the application
source code. We adapted our static analysis technique (presented in
Chapter 4) to MongoDB applications.s the application of this approach to the whole system history in order to
generate the so-called historical schema (defined in Chapter 3); the latter
allows understanding schema evolution and preventing errors and data
losses.

201





CONCLUSION AND FUTURE DIRECTIONS

Summary of the Contributions

At the beginning of this thesis, we identified a set of research questions. The below
Table summarizes the targeted research questions of each chapter.

RQ1 RQ2 RQ3

Research Questions

Chapters

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Distribution of the research questions targeted by each thesis chapter.

RQ1: How can history analysis of a DISS support the actual maintenance of the
system?

In Chapters 3, 5 and 8, we presented analysis techniques which can be applied to
support the actual maintenance of a DISS.

In Chapter 3, we presented a historical analysis approach that allows us to ana-
lyze the evolution history of a given database schema. The method is based on the
automated derivation of a historical schema, that includes all the schema objects
involved in the entire lifetime of the database, each annotated with historical and
temporal information. By conducting a study on a complex real-life system con-
cerned by a migration project, we showed the benefits of such a history analysis
to understand the current database structures, which is a prerequisite to the mi-
gration and the future developments. Among others, we detected the presence of
superseded structures and understood the reasons of their presence in the current
system version. This historical analysis also allowed us to understand the role of
some recently created large-scale tables. In addition, we also analyzed developers’
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activities on the database schema and identified the database specialists.

In Chapter 5, we proposed a second historical analysis approach allowing us to
understand, at a fine-grained level, how systems evolve over time, how the database
and code co-evolve and how several technologies may co-exist into the same system.
In particular, our approach focused on the evolution of several system artefacts,
namely the source code, the database schema, the database usage and the ORM
usage. By conducting a study on three real-life systems, we showed the benefits of
our historical analysis approach to understand how the program and database have
co-evolved over time and how this evolution has led to the current system state.
We studied the co-existence of several access technologies within a same system
and understood the objectives of introducing a new technology in a project (e.g.,
complementing or replacing the existing one). It also allowed us to detect current
bad practices when using some technologies and to understand the historical rea-
sons. All those observations can guide future developments and facilitate decision
making.
Although this approach requires some technology-dependent tools to extract the
database and ORM usage, the conceptual model on which our historical analysis
relies could be totally technology-independent with minor adaptations.

In Chapter 8, we presented a third historical analysis approach that aims at
understanding schema evolution in NoSQL data stores. This approach presented
two main contributions, namely, (1) an automatic approach that infers the database
schema of a schema-less NoSQL data store by analyzing the application source code
and (2) the application of this approach to the whole system history in order to
derive the historical schema. By conducting a study on a real-life system, we showed
the benefits of our approach. In particular, this historical analysis allowed us to
detect potentially critical code locations that could lead to runtime errors or data
losses, due to historical reasons.

RQ2: How to automatically analyze and extract the communication between
application programs and the database in a dynamic DISS?

In Chapter 4, we demonstrated that it is possible to automatically detect and recover
database accesses within the source code by use of a static program analysis tech-
nique. This analysis approach permits the automatic recovery of SQL queries which
are dynamically constructed in the code or which are partially/fully hidden because
generated by the ORM layer. By conducting a study on three real-life systems, we
also showed that this static approach could reach good results, with 71.5 - 99% of
successfully extracted queries and 87.9 - 100% of valid queries.

This technique is specifically designed for Java systems (the most popular pro-
gramming language today [TIOBE Programming Community Index, 2017]) and
targets three of the most popular Java access technologies, i.e., JDBC, Hibernate and
JPA. The automated detection and recovery of the database usage in the source code
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is a first essential step towards the implementation of an approach supporting the
co-evolution between the programs and the database.

RQ3: To what extent can we support program-database co-evolution in dynamic
and heterogeneous DISS?

In Chapter 6, we showed that our proposed what-if analysis approach constitutes
a good support of program-database co-evolution in dynamic and heterogeneous
DISS. This approach allows developers to simulate future database schema modifi-
cations and to determine how such modifications would affect the application code.
In order to ensure that the programs consistency is preserved under those schema
changes, our approach makes automatic recommendations to developers about
where and how they should propagate, at the line of code level, the schema changes
to the source code. Based on the study of three real-life systems, we showed that
our what-if analysis approach could reach very good results, with 99% of correct
recommendations when applied to a randomly selected schema changes.

In Chapter 7, we showed that it is possible to support program-database co-
evolution in dynamic and heterogeneous DISS by use of our visual analyzer, DAHLIA
2.0. DAHLIA 2.0 implements a city metaphor that allows an intuitive analysis of
the database usage of dynamic and heterogeneous systems by visualizing the links
between the source code and the database. DAHLIA 2.0 allows developers to assess
the future impact of any change on the system by highlighting the system part that
will be impacted by that change. We then showed the applicability of our tool to
eleven real-life systems. We finally proved its suitability by conducting a controlled
experiment; we observed that DAHLIA 2.0 can influence completion time and cor-
rectness of performing comprehension tasks pertaining to the program-database
communication, with a decrease of time to achieve the tasks (-41.99%) and a higher
level of correctness (+7.33%).
Our tool can deal with systems using several database access technologies together
like JDBC, Hibernate and JPA. Nevertheless, DAHLIA 2.0 and its visualization princi-
ples could be easily used to visualize DISS written in other programming languages
than Java and using other access technologies than JDBC, Hibernate and JPA. Indeed,
unlike the data extraction process, the visualization is technology-independent.

Future Directions

To conclude this thesis, we highlight interesting perspectives for future research.

Extending the scope of considered programming languages and technologies.
Although most of the presented methodologies are generic, some tool-supported
approaches that we implemented in this thesis are specifically designed to support
the evolution of Java systems using access technologies such as JDBC, Hibernate
and JPA. This technological choice was guided by some surveys (e.g., the TIOBE
index [TIOBE Programming Community Index, 2017]) revealing that Java is the
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most popular (used) programming language in the world. In particular, Goeminne et
al. [Goeminne and Mens, 2015] carried out a large-scale empirical study and revealed
that those three particular Java database access technologies (JDBC, Hibernate and
JPA) were among the most popular. However, other popular programming languages
(e.g., C, C++, C#, PHP, ...) and access technologies/frameworks (e.g., Spring, iBATIS,
...) could be considered.

Taking into account data in the DAHLIA visualization.
Chapters 3 and 7 presented our visualization tool, DAHLIA (and its extension
DAHLIA 2.0). This tool makes use of the city metaphor to visualize (historical)
information about the database schema. This city metaphor (borrowed from
CodeCity [Wettel and Lanza, 2008a]) exploits several dimensions to visualize this
information, i.e., the building width/height/color/packaging. Another visual metric
could be to consider data stored in each database table. Indeed, the number of
records in a table could be visualized and affected to the building height. The taller
the table, the higher the number of records stored in the table. It would allow users to
assess the required effort to migrate the stored data in case of a database refactoring
(e.g., table split/merge/etc.).

Automating the schema change propagation process. In the context of the co-
evolution of databases and programs, impact analysis is an important process.
Indeed, an in-depth analysis of the impact of a future database schema change
is required to precisely assess the program adaptation effort; in Chapters 6 and 7,
we respectively presented (1) an automatic approach making recommendations to
programmers about where and how to propagate a simulated schema change to
the source code, and (2) DAHLIA 2.0 allowing developers to visualize the interac-
tions between the application programs and the database. We consider that those
tool-supported approaches constitute a preliminary phase to reach our ultimate
objective, namely contributing to (partially) automate the database schema change
propagation process itself, via source code transformation techniques.

Automating conceptual re-documentation of database usage in source code.
Linares-Vásquez et al. [Linares-Vasquez et al., 2015] presented an empirical study
(implying 3.1K open-source Java systems) that reveals that a large proportion of
database-accessing methods is completely undocumented. Later [Linares-Vásquez
et al., 2016], the authors presented DBScribe. DBScribe statically analyzes the code
and database schema to detect database usages; it then automatically generates nat-
ural language documentation at source code method level that describes database
usage for a given system. However, the proposed static analysis approach has critical
limitations while (1) extracting the database usage - i.e., it only intraprocedurally
reconstructs the access and thus misses essential inter-procedural information -
and (2) generating automatic documentation - i.e., the used templates to generate
documentation are at the logical level and mainly in the simple form "this instruc-
tion inserts the <attr> attributes into table <table>". An extension of our work could
be to devise an automatic approach that would consist of defining the conceptual
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interpretation of SQL queries (recovered by our static analysis approach) in terms of
a domain-specific, platform-independent model. Based on the database conceptual
schema, this approach would generate a high-level documentation (e.g., this method
removes all the orders placed by a given customer from the database). This possible
future direction is inspired by the work of Noughi et al. [Noughi and Cleve, 2015].

Conducting an empirical study to detect the most frequent SQL query anti-pat-
terns. Several authors have listed the common anti-patterns in SQL queries [Kar-
win, 2010; Phil Factor, 2010]. Those SQL code smells can have impact on the database
performance or alter the program behaviour. Hence, detecting the presence of such
SQL code smells is sometimes indispensable to improve the database performance
or avoid unexpected program behaviours at runtime. An interesting future direction
would be to extend our static analysis approach (presented in Chapter 4) to (1) ex-
tract the SQL queries from the source code and (2) automatically spot the presence
of anti-patterns. In this way, we could conduct an empirical study on hundreds/t-
housands of open-source systems in order to automatically detect the most frequent
encountered SQL query anti-patterns and study their longevity/impact in a project.

Supporting the migration of relational systems towards NoSQL. NoSQL tech-
nologies can face some limitations of traditional relational database technology
(e.g., improving the response time, handling frequent data writes, etc.). The ap-
pearance of NoSQL technologies raises new challenges in software evolution. For
instance, replacing legacy relational databases by NoSQL databases is a challenge
very similar to this thesis topic. Indeed, detecting/recovering the SQL communica-
tion between programs and database, and then adapting the legacy SQL accesses
to the new NoSQL structures is challenging, especially in presence of dynamic and
heterogeneous systems. A real-world example is a current project conducted by the
OSCAR developers, the main objective of which is to (partially) migrate the relational
database to a NoSQL model to improve performance. Therefore, automated sup-
port to assist developers in this task of migrating relational systems towards NoSQL
systems would be a precious asset.

Studying the co-existence of relational and NoSQL databases within a same sys-
tem, and supporting their co-evolution. The emergence of NoSQL technologies
raises new challenges while migrating existing (relational) systems towards NoSQL
platforms. However, NoSQL technologies are not necessarily intended to fully re-
place relational databases. Instead, NoSQL technologies can be seen as a comple-
mentary paradigm. The presence of those two different paradigms, i.e., NoSQL and
relational, in a same system can pose new problems to ensure their co-existence and
co-evolution in a consistent manner. In particular, a novel future research direction
could be to study in practice how those technologies co-exist and co-evolve together
in a same system. Moreover, automated support to facilitate this co-evolution would
be helpful.

207



CONCLUSION AND FUTURE DIRECTIONS

Designing automated model-driven engineering for NoSQL systems. Although
NoSQL databases are so-called schema-less, it does not mean that data are not struc-
tured. Several authors have discussed the need for data-model approaches while
designing NoSQL databases [Olivera et al., 2015; de Lima and dos Santos Mello, 2015;
Atzeni, 2016]. We claim that an automated model-driven engineering is primordial
to design NoSQL systems in a disciplined manner. Inspired by the database engi-
neering process, our proposed methodology would produce different models, from
a technology-independent (e.g., the conceptual schema) to a technology-specific
(e.g., the physical schema) point of view. Similar to the relational database de-
sign process, the conceptual schema would be a conceptual representation (in a
technology-independent manner) of the data, in terms of entities, relationships
and attributes. The physical schema would describe the technical constructs of the
database (e.g., a document/key-value/graph representation). This representation
would directly depend on the chosen NoSQL technology (more than 50 NoSQL
technologies exist [Stonebraker, 2011]) and would also allow the definition of some
technical optimizations (e.g., denormalization, data redundancy, ...). In addition,
mappings between objects of both schemas would be established; for instance, a
concept/attribute/relationship of the conceptual schema can be mapped to one
or several collections/fields of the physical schema that models a document store
(e.g., MongoDB). In this way, one keeps traceability on implicit integrity constraints
imposed on the stored data (e.g., data redundancy, foreign keys, etc.). Moreover, a
potential useful asset of our proposed methodology would consist in keeping track
of different versions of data objects by use of version-based models. The final step
of this NoSQL database design process could be the automatic generation of DAO
classes (in the target programming language and NoSQL framework), that could be
automatically regenerated in case of changes in the physical schema. The benefits
of such an engineering process would be to propose a disciplined manner to de-
sign NoSQL databases, and to have an up-to-date documentation facilitating future
developments.
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CONTROLLED EXPERIMENT FOR THE EMPIRICAL

EVALUATION OF DAHLIA 2.0

In Chapter 7, we presented DAHLIA 2.0 and then conducted a controlled experi-
ment to evaluate the suitability of the approach. As mentioned in Section 7.4, we
decided to provide the control group of our experiment with data tables containing
the metrics required to solve the tasks. Those data were stored in 3 Excel sheets. The
structure of each sheet is described in Figures A.1, A.2 and A.3.

The first sheet depicts a two-dimensional array, where (1) the horizontal axis
contains the set of tables defined in the database schema of the subject system, and
(2) the vertical axis contains the set of Java files of the subject system. This sheet
represents a binary matrix where the couple (F i l ei ,Table j ) = 1 if F i l ei accesses
table Tabl e j (0, otherwise). This matrix allows students to know which tables are
accessed by which files.

The second sheet also depicts a two-dimensional array, where (1) the horizon-
tal axis still contains the set of tables defined in the database schema of the sub-
ject system, and (2) the vertical axis contains the lines of code, grouped by Java
file, that access the database. In addition, the Techno column specifies the used
database access technology. This sheet contains a binary matrix where the couple
(F i l ei : j ,Tablek ) = 1 if line j of F i l ei accesses table Tablek (0, otherwise). This
matrix allows students to know which lines of code of which files access which tables
(and by use of which technology).

The third sheet also depicts a two-dimensional array, where (1) the horizon-
tal axis still contains the set of tables defined in the database schema of the sub-
ject system, and (2) the vertical axis contains the three access technologies, i.e.,
JDBC, Hibernate and JPA. This sheet contains a binary matrix where the couple
(techno,Table j ) = 1 if the access technology techno accesses table Table j (0, oth-
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APPENDIX A. CONTROLLED EXPERIMENT FOR THE EMPIRICAL EVALUATION OF

DAHLIA 2.0

Table1 Table2 Table3 …          Tablem

File1

File2

File3

… 

Filem

0                  1                   1               …             0    

1                  0                   0               …             0    

0                   0                  0               …             1    

1                   1                  0               …             1    

…

Figure A.1: Structure of the first Excel sheet.

Techno      Table1 Table2 Table3 …          Tablem

File1:12

File1:51

File2:21

File3:8

File3:81

File3:125

… 

Filem:x

JDBC            0                   1                   0               …             0    

HIB             0                   0                   1               …             0    

JDBC            1                   0                   0               …             0    

HIB             0                   0                   0               …             1    
HIB             0                   0                   0               …             1    
JPA             0                   0                   0               …             1    

JDBC            1                   1                   0               …             1    

Figure A.2: Structure of the second Excel sheet.

Techno      Table1 Table2 Table3 …          Tablem

JDBC            1                   1                   0               …             1    

HIB             0                   0                   1               …             1    

JPA             0                   0                   0               …             1    

Figure A.3: Structure of the third Excel sheet.

erwise). This matrix allows students to know which technologies access which
database tables.
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Appendix A. Controlled Experiment for the Empirical Evaluation of DAHLIA 2.0

The raw measurements of completion time and correctness performed during
the experiment are shown in Table A.1.

Student Tool Education Time (seconds) Score
1 DAHLIA M 568 7
2 DAHLIA M 600 8
3 DAHLIA M 384 8
4 DAHLIA M 444 7
5 DAHLIA M 329 8
6 DAHLIA M 809 8
7 DAHLIA E 488 8
8 DAHLIA E 407 6
9 DAHLIA E 327 8
10 DAHLIA E 600 8
11 DAHLIA E 317 8
12 DAHLIA E 635 8
13 DAHLIA E 424 7
14 DAHLIA E 678 6
15 DAHLIA E 455 8
16 DAHLIA E 294 7
17 DAHLIA E 408 8
18 DAHLIA E 243 8
19 DAHLIA E 772 6
20 DAHLIA B 488 8
21 DAHLIA B 310 7
22 DAHLIA B 405 8
23 DAHLIA B 360 8
24 DAHLIA B 357 8
25 DAHLIA B 465 8
26 EXCEL M 659 8
27 EXCEL M 831 6
28 EXCEL M 643 8
29 EXCEL M 664 7
30 EXCEL M 585 7
31 EXCEL E 971 6
32 EXCEL E 703 8
33 EXCEL E 591 8
34 EXCEL E 868 7
35 EXCEL E 570 5
36 EXCEL E 461 7
37 EXCEL E 895 7
38 EXCEL E 793 6
39 EXCEL E 697 8
40 EXCEL E 632 8
41 EXCEL B 1062 5
42 EXCEL B 1361 7
43 EXCEL B 577 7
44 EXCEL B 1058 8
45 EXCEL B 1085 7
46 EXCEL B 698 8
47 EXCEL B 953 6
48 EXCEL B 987 8

Table A.1: Measured completion times (in seconds) and scores (1-8).
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